

Environmental Product Declaration ISO 14025 EN15804+A2 2019 Compliant for Autex Acoustics® Wool Felt Panels and Tiles

EcoPlatform EPD Reference No. EPD Registration No. Issue Date Valid Until EPD Type Geographical Scope

AX01 2025EP AX01 2025EP 03 Mar 2025 03 Mar 2030 Cradle to grave New Zealand to global market

Mandatory Disclosures

EPD Verification and LCA detail								
Range Name	Autex Acoustics® Panels	Product Name	Embrace Wool Felt					
Demonstration of V	Demonstration of Verification							
Objectives To show improved, net-zero, net-positive and regenerative results and timely imperatives to secure viable climate and biodiversity on earth against a background of increasing disasters attributable to anthropogenic climate change.								
Communication	ISO14025:2010 for business	This EPD discloses potential environmental outcomes compliant with ISO14025:2010 for business-to-business communication. Independent external verification of this declaration and data ensures fitness for business-to-consumer communication [1].						
Comparability	parability Different program EPDs may not be comparable. Comparability is further dependent on the product category rules and data source used.							
Reliability Life Cycle Impact Assessment (LCIA) results are relative expressions that do not predict impacts on category endpoints, exceeded thresholds, safety margins or risk								
EPD Program Oper	ator LCA and I	EPD Producer	Declaration Owner					

Global GreenTag International Pty LtdThe Evah InstituteAutex Industries LtdL38, 71 Eagle St., Brisbane21 Roslyn Crt, Tamborine702-718 Rosebank Rd. AvondaleQLD 4000 AustraliaQLD 4217 AustraliaAuckland 1026 New ZealandPhone: +61 (0)7 33 999 686Phone: +61 (0)7 5545 0998Phone: +64 (9) 828 9179http://www.globalgreentag.comhttps://www.evah.institutehttp://www.autexacoustics.co.nz

Product Category Rules (PCR)	lobal GreenTag International Platform EPD compliant with ISO14025 standard [1] npact assessment methodology in reference EN15804 [2] and PCR WNB: 2023. [3]							
EPD Owner	his EPD is the property of the declared manufacturer tabled above.							
	LCA & EPD Developed by Delwyn Jones, The Evah Institute							
☑ Internal	01Mar2025 LCA & EPD Peer Review by Dr Sharmina Begum, The Evan Institute							
	EPD Platform Operator Review by David Baggs, Global GreenTag Pty Ltd							
☑ External	I, the undersigned, 3 rd party verifier, hereby confirm my examination did not find any relevant deviations by the EDP owner, LCA report or PCRs based on EN 15804 2012+A2:2019 and ECO Platform agreed interpretations by CEN TR 16970. Company-specific, upstream and downstream data in the LCA & environmental features report files held at The Evah Institute were plausible and consistent. This verification applied Global GreenTag International adopted ECO Platform checklists and this EPD states where to find PCRs and programme rules.							
Explanations	Further explanatory information is available at info@globalgreentag.com or by contacting certification1@globalgreentag.com.							

Program Description

EPD Scope	Tł	The scope is cradle to grave A1 to C4 + D as defined by ISO14025. [1]																	
System boundary		he system boundary with nature includes material & energy acquisition, rocessing, manufacture, transport, installation, use plus waste out to end of life.																	
Stages included	AI	l kno	own	oper	ations	and	sta	ges	in	mod	dules	A1 to	D3 a	are ir	nclud	ed.			
Information	Fi	gure	e 1 d	epict	s A1 to	o C4	mo	dul	es	insio	de thi	s crac	lle to	grav	/e sy	stem	bour	ndary	
Model	Bu	ildir	ng L	ife C	ycle A	sse	ssn	nen	t								Be	yond	ł
Information	Ac	tual			Scena	rios	•										sys	stem	
Stages	Ρ	rodu	ıct	Con	Construct Use End-of-Life				Benefit & load										
Modules	A1	A2	A3	A4	A5	B1				B5	•	B7	C1	C2	C3	C4	D1	D2	D3
Operations Cradle to Grave Fate C ₂ F & beyond system to Cradle (C ₂ C)	Resources	Transport	Manufacture	Transport	Construct	Use	Maintain	Repair	Replace	Refurbish	Energy use	Water use	Demolish	Transport	Process Waste	Disposal	Reuse	Recovery	Recycling
C ₂ Gate+Options	М	М	М	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C ₂ Grave	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	0	0	0

Figure 1 Modules A to C Within the Cradle to Grave System Boundary and D Beyond

Primary Data Sources and Quality

Primary Data	Data was collected in accordance with EN ISO 14044:2006, 4.3.2, from primary sources including manufacturers, suppliers and their publications on standards locations, logistics, technology, market share, management system and commitment to improved environmental performance.
Cut-off & Data quality	Criteria complies with EN 15804:2012+A2:2019.
Allocation	Physical by mass and/or energy flow share and not by economic share.
Range and variability	Significant differences of mean LCIA results are declared.

Data Sources

Primary Data	Primary data is from primary sources 2023 to 2025 including manufacturer and supplier standards, logistics, technology, market share and management system in accordance with EN ISO 14044:2006, 4.3.2. All are physically allocated and none economically.						
	 Operations include all known raw material acquisition, refining and processing plus 						
	 scrap or material reuse from prior systems; 						
A1 A2 Store	 electricity generated from all sources with extraction, refining & transport plus 						
A1-A3 Stage inclusions	 secondary fuel energy and recovery processes. Also transport to factory gate; 						
	 manufacture of inputs, ancillaries, products, packaging, maintenance, replacement 						
	 plus flows leaving at end-of-waste boundary and 						
	• fate of all flows at end of life.						
Variability	Significant differences of average LCIA results are declared.						
Chemicals of Concern	Contains no substances in the European Chemicals Agency "Authorised or Candidate Lists of Substances of Very High Concern (SVHCs)".						

Product Information

This section provides data required to calculate assessment results factoring different mass and periods.

Manufacturing Site	702-718 Rosebank Road, Avondale, Auckland, New Zealand
Range Names	Autex Acoustics® Panels
Brand Name & Code	Embrace Wool Felt
Time	Made and sold in 2025 for first use
Factory warranty	10 years
Site Representation and Geography	New Zealand, Australasia, Pacific Rim and the World
Functional Performance in Building	Reduce and control reverberated noise and echo in building interiors. create high-performance acoustic features for interior space.
Reference Service Life	RSL 20 years with 97% reuse. Higher churn must factor results B4 & B5.
Declared Unit	Wool Felt of given kg/m ² coverage and noise reduction coefficient NRC ¹
Functional Unit	20 year use per kg declared >0.2NRC product of given kg/m ² coverage.

Product Components Base Material Origin and Detail

This section summarises factory components, functions, source nation and % mass share. Key components by function, type, sources and % mass share are tabled below.

Function	Component	Source	Amount
Substrate	Knitted felted sheep wool	New Zealand	>99<100
Process additives	Dyes & conditioners	Global	<0.1%

Product Functional & Technical Performance Information

This section provides manufacturer specifications and additional information.

	Sound absorption performance complies as determined using
	ISO 354 methodology.
	Reaction to fire performance complies with
Applicable standards	ISO 9705:1993,
	AS 5637.1:2015,
	BS EN 13501-1 and
	ASTM E84.
Length*Width	(25,000*1,600) mm
Acoustic Properties	0.45-0.70 NRC
Coverage	1000 gsm

¹ NRC = Noise reduction coefficient conforming to ISO11654 standard methods

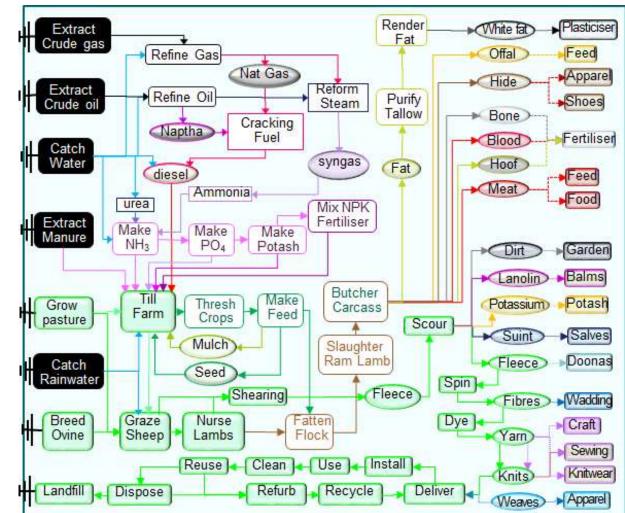

System Scope and Boundaries

Figure 2 shows included processes in a cradle to grave system boundary to end of life fates reuse, recycling, or landfill grave.

Stages A1 to 3 model actual operations to acquire, refine, transport, fabricate, coat, use, clean, repair, reuse and dispose of metal, masonry, ceramic, timber, glass, plastic and composites.

Stage A4 to C4 are modelled on typical scenarios to forecast operations including those of:

- Mining, extracting and refining resources to make commodities and packaging;
- Acquiring, cultivating, harvesting, extracting, refining produce and biomass;
- Fuel production to supply power and process energy and freight;
- Chemicals use in processing resources, intermediates and ancillaries;
- Process energy, fuel and freight of resources, intermediates and ancillaries;
- Use, cleaning, recoating, repair, recycling, re-use and landfill, as well as
- Infrastructure process energy transformed and material wear loss e.g. tyres.
- •
- •

Figure 2. Product Process Flow Chart

Scenario Descriptions

This section defines modelling stages scenarios A4 to D3 beyond actual operations in module A1 to A3.

Module	Type specified	Amount	Type specified	Amount
Construction Modules				
A4 Transport	Sea Shipping	13,000	85% Capacity	Full back load
factory to depot then to site	Interstate Rail	1300 km	85% Capacity	Full back load
	25t semi-trailer	200 km	85% Capacity	No back load
A5 Install	VOCs indoors	0%	Packaging & Waste	0%
Building Modules				
B1 Use	VOCs	0%	No other flows	0%
B2 Maintain	fit for purpose	0%	fit for purpose	100%
B3 Repair	fit for purpose	95%	Repair damaged	5%
B4 Replace	fit for purpose	0%	No other flows	0%
B5 Refurbish	fit for purpose	0%	fit for purpose	100%
B6 Energy use	off grid	0%	Solar and wind energy	100%
B7 Water use	off grid	0%	Rain and dew	100%
End of Life Modules				
C1 Demolish	Fit for purpose	0%	No other flows	0%
C2 Transport	Fit for purpose	0%	No other flows	0%
C3 Waste Processing	Fit for disposal	0%	No other flows	0%
C4 Disposal	Fit for purpose	0%	No other flows	0%
Beyond System Bounda	ary Modules			
D1 Reuse	Fit for purpose	95%	No other flows	0%
D2 Recover	Fit for purpose	2%	No other flows	0%
D3 Recycle	Fit for purpose	3%	No other flows	0%

Whole of life Performance

Waste	Cradle to grave waste to landfill from operations was non-hazardous.
Disposal	No production waste is sent to river, land or ocean outfalls or council landfills.
Effluent	LCI results and ESCAP raised no red-light concerns in emissions to water ² .
Wildlife safety	Low VOC, no plastics, glues or formaldehydes.
No Chemicals of Very High Concern	Contains no substances in the "Authorised or Candidate Lists of Substances of Very High Concern (SVHCs)" with the European Chemicals Agency.
Health Protection	The product does not contain levels of carcinogenic, toxic or hazardous substances that warrant ecological or human health concern cradle to grave. No issues or red-light concerns existed for product human or ecological toxicity.
Environmental Protection	Continuous improvement under the maker's uncertified management system avoids toxics, waste and pollution plus reduce their material and energy use.
Environmental Health Effects	No potential in-use impacts on environment or health are known.
Health Safety & Environment	Apart from compliance to occupational and workplace health safety and environmental laws no additional personal protection is considered essential for manufacture, use or reuse.

LCA Primary Data Quality

Data was <10 years and quality parameters are tabled below. Cut-off & quality is ISO14025 compliant^[1].

Table a LCA Primary Data Quality Parametrs and Uncertianty

Background	Data Quality	Parameters and U	ncertainty (U)		
Correlation	Metric σg	U ±0.01	U ±0.05	U ±0.10	U ±0.20
Reliability	Reporting	Site Audit	Expert verify	Region	Sector
,	Sample	>66% trend	>25% trend	>10% batch	>5% batch
Completion	Including	>50%	>25%	>10%	>5%
	Cut-off	0.01%w/w	0.05%w/w	0.1%w/w	0.5%w/w
Temporal	Data Age	<3 years	≤5 years	<7.5 years	<10 years
	Duration	>3 years	<3 years	<2 years	1 year
Technology	Typology	Actual	Comparable	In Class	Convention
	Focus	Process	Line	Plant	Corporate
Geography	Range	Continent	Nation	Plant	Line
	Jurisdiction	Representa	ition is Global, Austi	ralasia and Pacific	Rim

2 According with national standards in ANZECC Guideline For Fresh & Marine Water Quality (2000)

Background Data Type and Sensitivity

Sheep Wool Composition

Apart from Keratin protein greasy wool fleece contains 26% soil, 28% suint 12% fat and 1% water and trace minerals³. Removing soil, suint and fat leaves clean dry wool comprising 97% protein mass ⁴.Table 1 lists strong wool chemical analysis results from literature reviews and industry research. Where analysis could not detect hydrogen, its content was calculated stoichiometrically. Overall averages show 46% Hydrogen 27% Carbon, 15% Oxygen, 9% Nitrogen and 3% Sulphur. Hydrogen content is highest followed by Carbon then less Oxygen, much less Nitrogen and least Sulphur. The high Hydrogen and Carbon reflects abundant input sources and low Oxygen reflects limited availability in rumen⁵ compared to that in fodder.

Sample No.	Source	Hydrogen	Carbon	Oxygen	Nitrogen	Sulphur	Total
>30	Literature	45	30	14	10	2	101
>8	ICP MS ⁷	45	30	13	10	3	101
>8	SEM XD ⁸	44	22	21	9	3	99
>16	Methionine9 10	45	27	14	7	7	100
>50	Polyamide	44	24	16	13	3	100
>16	Wool Protein 11	51	27	13	7	2	100
>128	Mean	46	27	15	9	3	100

Table 1 Chemical Analysis Results ex Woolworks NZ⁶ & CSIRO

Durable Sheep Wool Coproducts

Since 2009, the Evah Institute has developed LCIA for cattle tallow, sheep wool and goat cashmere products. Other ruminant products include emollients, fats, foods, feeds, fibres, fertiliser, hides, nutrients, leathers, oils, and waxes. Table 2 lists many sheep coproducts. Durable applications within sheep industry supply scope include insulation, upholstery, carpets, and plasticisers as listed.

	mudatly copie	44013			
Hide	Wool	Lanolin	Fats	Carcass	Intestines
Leathers	Yarns	Pharmaceuticals	Tallow	Meats	Sausage Casings
Upholstery	Fabric & Felt	Lotions	Polymers	Bone	Instrument Strings
Luggage	Carpet	Motor Oils	Plasticisers	Offal	Surgical Sutures
Footwear	Upholstery	Lubricants	Surfactants	Protein	Racquet Strings
Nursery Rugs	Doona Fill	Printing Ink	Industry Soap	Manures	Organs
Drum head	Matress Fill	Adhesive Tape	Chemicals	Potash	Meat & bone meal
Chamois	Clothing	Shampoo	Fatty Acids	Phosphorus	Blood meal
Sports gear	Knitwear	Conditioner	Solvents	N Fertiiser	Pet food
Baseballs	Coats & Hats	Cosmetics	Paints	Minerals	Blood
Tennis Balls	Socks & Mits	Lipstick	Chewing Gum	Nutrients	Cultures
Oil Spill Pad	Art Brushes	Mascara	Explosives	Ash	Bacteria

Table 2 Sheep Industry Coproducts

Table 3 lists NZ upland Merino Perrindale sheep coproduct average allocated wet mass from site as well as industry data ¹². While wool has a 7.7% mass share of total coproduct, this ignores its insulation value reducing energy demand of flocks grazing in the open across exposed uplands in cold wet weather.

³ Parlato M. Valenti F. Midolo G. & Porto S. (2022) Livestock Wastes Sustainable Use & Management, JO Energies DOI 10.3390/en15093008.

⁴ International Wool Textile Organisation https://iwto.org/sustainability/life-cycle-assessment/

⁵ Hackman J. F. & Firkins J.L. (2015) Maximizing efficiency of rumen microbial protein production, Front Microbiol., Sec. Systems Microbiology V6 <u>https://doi.org/10.3389/fmicb.2015.00465</u>

⁶ Woolworks Pty Ltd Hawks Bay New Zealand Confidential Report 2023

⁷ Inductively Coupled Plasma Mass Spectrometry <u>https://pmc.ncbi.nlm.nih.gov/articles/PMC6719745/#</u>

⁸ Scanning Electron Microscopy Xray Diffraction https://wiki.aapg.org/SEM, XRD, CL, and XF methods

⁹ Reis, P.J. (1988). The Influence of Absorbed Nutrients on Wool Growth. In: Rogers, G.E., Reis, P.J., Ward, K.A., Marshall, R.C. (eds) The Biology of Wool and Hair. Springer, Dordrecht. <u>https://doi.org/10.1007/978-94-011-9702-1_13</u>

¹⁰ Liu S. M and Masters D.G (2000) Animal Science, Volume 71, Issue 1, <u>https://doi.org/10.1017/S1357729800055004</u>.

¹¹ Rogers et al. 1988, The Biology of Wool and Hair. Springer, Dordrecht. <u>https://doi.org/10.1007/978-94-011-9702-1_13</u>

¹² Australasian Livestock coproduct mass share data reported in 2024 by https://www.mla.com.au/

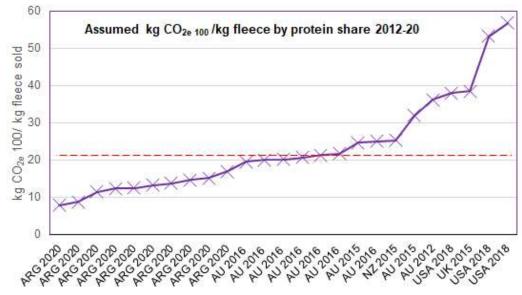


Table 3 NZ Upland Herd Strong Greasy Wool Fleece Coproduct Mass %Share

Coproduct	Carcass	Meal: organs, blood,	Hide	Fleece	Tallow	Wet Gut	Sum
Mass %	50	22	13	7.7	6.7	0.6	100

Sheep Fleece Greenhouse Gas (GHG) Emissions to 100 year Horizons

This section describes Greenhouse Gas (GHG) estimation cited in recent literature [4 to 9]. Figure 3 shows GHG ranging (8 to 58) kg CO_{2e} /kg and a red line depicting the average 22kg CO_{2e} /kg fleece.

Figure 3 Recently Cited Assumed Wool Fleece GWP

Table 4 cites such GHG results from a wide range of nations and climate. All were allocated on 22% to 50% share of the total. Being >3 to 6 times higher than 7.7% mass share means they do not reflect mass allocations in Table 3. Such LCA excluding significant coproduct shares does not comply with EN15804 standard for building product EPDs.

Table 4 Recently Cited Wool Fleece Allocations by Protein.

Country	First Author	Year	Code	Share %	kg CO _{2e} /kg
New Zealand		2015	NZ 2015	43	25.3
		2015	AU 2015	45 and 50	32.0 and 24.7 respectively
Australia	Wiedemann			35 and 38	25.0 and 21.7 respectively
Australia		2016	AU 2016	40 and 42	19.5 and 21.3 respectively
				47	20.1 and 20.0
Australia	Cottle	2016	AU 2016	36	20.7
USA	Wiedemann	2018	USA 2018	22	38.4
Argentina	Peri	2020	ARG 2020	33	7.8, 8.8, 11.5, 12.4, 12.4, 13.3, 13.7, 14.7, 15.1, 16.9
New Zealand	Mazzetti	2023	Uncharted	31	22.2

The Mazzetto et al LCA report in 2023 for Wool Impact New Zealand (NZ) also finds 22kg CO_{2e} 100kg fleece ¹³. It did so after allocating 31% burdens to sheep wool and 69% to the hot carcass on protein content. Clean dry wool contains 97% protein whereas hot carcass wet meat contains only 25% protein by mass. It is assumed, that the authors factored in such differences.

NZ Average Herd Total GWP versus Wool Shares

Table 5 reports GHG emissions allocated to the whole animal versus across those 2 products. It compares these to Evah biophysically allocated LCA to all coproducts including embodied carbon from comparable herds grazing on marginal upland in New Zealand. Note that Evah reduced the 7.7% mass fleece share to 5.7%

¹³ Mazzetto A. Falconer S. & Ledgard S. (2023) Carbon footprint of strong wool from an average New Zealand sheep farm system, Confidential Report for Wool Impact RE450/2023/038

based on its insulation reducing energy demand and heat loss 25% annually in cold wet weather.

Sy wool Fleece Gwr	WIAZZELLO VS EVAII	
100% Live Animal	31% Mazzetto ¹⁴	5.7%Evah
59.55	18.46	3.407
5.839	1.810	0.334
3.548	1.100	0.203
0.839	0.260	0.048
0.935	0.290	0.054
0.645	0.200	0.037
0.258	0.080	0.015
0.065	0.020	0.004
0.069	0.022	0.004
0.032	0.010	0.002
0.032	0.010	0.002
0	0	-9.90
0	0	-2.03
0	0	-0.018
72	22	-7.8
	100% Live Animal 59.55 5.839 3.548 0.839 0.935 0.645 0.258 0.065 0.069 0.032 0.032 0 0 0 0 0 0	59.55 18.46 5.839 1.810 3.548 1.100 0.839 0.260 0.935 0.290 0.645 0.200 0.258 0.080 0.065 0.020 0.069 0.022 0.032 0.010 0 0 0 0 0 0 0 0

Table 5 NZ Upland Herd Strong Greasy Wool Fleece GWP Mazzetto Vs Evah

EN15804 Compliance Sheep Product LCA

All such cited studies also exclude all sequestration and embodied chemical drawdown [4 to 9]. On short-term single-use food, medicine, and packaging products LCA practice often ignores embodied input. History has shown, however, it is better to consider than ignore embodied content that can have cumulative effects.

Again, LCA excluding significant embodied GHG fails to comply with the EN15804 standard for building product EPDs. No durable wood, wool, polymer, ceramic, metal, or mineral merits its embodied content being ignored. Their quantification can reveal short term risks and enduring opportunities arising for:

- Mitigating human, environmental and climate health and resource depletion via.
 - o landfill emissions retrieval for climate security and to reform feedstock for economic return.
 - o material reuse, recovery, recycling and upcycling for economic returns on investment
 - o feedstock energy recovery and reuse for fuel value and to reduce fire loads
 - o feedstock energy recovery to avoid contaminating waterways, air and land
- Resource recovery via sewer mining sources of
 - o biosolids via composting to avoid human disease, marine pollution and food chains
 - o prescription drugs via biodigesors to avoid contamination marine food chains
 - o hormones via bio digestors to avoid polluting marine food chains
 - o secondary biomethane sources to fuel industry and urban greener techologies
 - o hydrogen sources to fuel industry and urban climate-safe techology
 - o energy to pump distilled water for urban reuse to avoid more sea level rise
 - o energy to pump distilled water to industry and agriculture for economic security
 - o biomass for making polymers, fertilisers and soil enriching bio char carbon.
 - o scarce materials and tramp elements for making electronic components.

Wool Protein Chemical Compositions

Merino cross breed wool protein comprises amino acids molecular formulae and mass share listed in Table 6. In the last column each amino acid's microstructure depicted has the same basic structure of attached α -carbon, hydrogen, α -carboxyl, α -amine and multivariate R-groups. Hydrocarbon C-C-H, methyl CH₃ and methylene CH₂ groups are shown in red, carboxyl C=O in blue, amines N-H and ammonias N-H₃ in green, sulphides S in yellow and unknown R groups in black.

¹⁴ Mazzetto et al op cit

All 18 contain methyl and methylene groups but only methionine and cystine contain Sulphur.

Table 6 Chem		structure Low G			roteir
Protein	1 Mole	Chemical	Mole	cules	
Amino Acids	fraction	Formula	CO_2	СН	CH₃
Tryptophan	0.08675	$C_{11}H_{12}N_2O_3$	7	4	1
Cystine	0.08202	$C_{6}H_{12}N_{2}O_{4}S_{2}$	1	0	1
Phenylaniline	0.07137	$C_9H_{11}NO_2$	2	6	1
Arginine	0.06861	$C_6H_{14}N_4O_2$	2	2	2
Tyrosine	0.06506	$C_9H_{11}NO_3$	4	6	1
Histidine	0.06112	$C_6H_9N_3O_2$	1	2	1
Methionine	0.05875	$C_5H_{11}NO_2S$	1	1	3
Lysine	0.05757	$C_6H_{14}N_2O_2$	1	1	4
Aspartate	0.05244	C ₄ H ₇ NO ₄	3	0	1
Leucine	0.05166	$C_6H_{14}N_2O_2$	1	2	4
Isoleucine	0.05166	$C_6H_{13}NO_2$	1	1	4
Glutamate	0.04850	C ₃ H ₉ N0 ₄	2	0	2
Threonine	0.04692	$C_4H_9NO_3$	2	0	2
Valine	0.04614	$C_5H_{11}NO_2$	1	2	3
Proline	0.04535	$C_5H_9NO_2$	1	1	3
Serine	0.04140	C ₃ H ₇ NO ₃	2	0	1
Alanine	0.03509	C ₃ H ₇ NO ₂	1	1	1
Glycine	0.02957	$C_2H_5NO_2$	1	0	1
Sum			34	29	36

Table 6 Chemical Microstructure Low GWP Wool protein CO₂ CH and CH₃ mass share

Chemical Microstructures of Wool Polyamide, Methionine versus Protein

This section compares typical clean sheep wool depictions of atom and compound types from generic polyamide to specifically known amino acids. Figure 4 depicts wool polyamide $n(C_2H_4O_2NxS_2Ry)$ with unknown side chains. Figure 5 depicts the methionine $n(C_5H_{11}O_2NS)$ that apart from methyl and methylene groups one of only two amino acid sources of Sulphur vital to maximise merino wool growth¹⁵.

Figure 4 Wool Microstructure as a Generic Polyamide

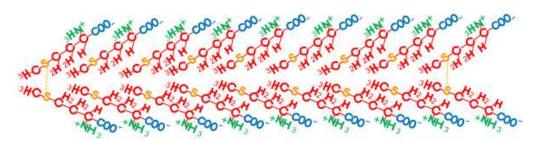
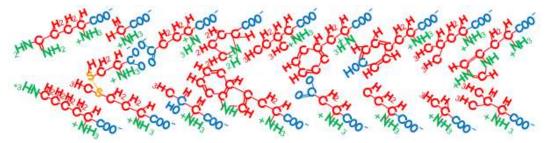



Figure 5 Wool Methionine Amino Acids

¹⁵ Reis, P.J. (1988) op cit

Figure 6 depicts wool $n(C_{34}H_{62}O_{15}N_9S_2)$ protein microstructure with multivariate unknown side chains.

Figure 6 Wool Protein Depicting all Amino Acids

Greenhouse Gas in Wool Polyamide, Methionine versus Protein

Table 7 lists theoretical polymer chemistry versus embodied GHG to 100 years. The range of such wool results include 3 low and 3 median result sets with means $\pm 10\%$. A higher value is listed in Table 6.

Wool Molecular / GHG	Molar mass Shares			GHG CO _{2eq} 100/kg				
Modelling Assumptions	CO ₂	CH ₄	S +N	1*CO ₂	27.2*CH4	Sum	Means	
Polyamide	0.733	0.267	0.000	0.733	7.267	8.00		
Methionine	0.666	0.306	0.028	0.666	8.334	9.00	8.8	
Protein O ₂ limited	0.652	0.320	0.028	0.652	8.708	9.36		
Protein H ₂ limited	0.380	0.592	0.028	0.380	16.112	16.5		
67% Rumen Protein	0.337	0.635	0.028	0.337	17.275	17.6	18.1	
67% Rumen Methanotroph	0.244	0.729	0.027	0.244	19.818	20.1		

Table 7 Modelling Assumptions for GWP embodied Clean Wool Fibre

Table 8 lists wool polymer chemistry modelling assumptions against Global Warming Potential (GWP) results to 100 year horizons of biogenic, land use change, fossil fuel use and the total GHG ¹⁶. These cradle to grave results also show close lower and median result set means $\pm 10\%$ plus a higher value including minimum N₂O emissions. Biogenic GWP results are most sensitive to inclusion of embodied N₂O in the protein modelling. None of these lower, median or high results yet include embodied N₂O.

Wool / GWP Model Assumed **Fossil Fuels** Biogenic LULUC Total Mean Polyamide -8.3 -1.7 2.8 -7.2 8.0 Methionine -9.3 -1.7 2.8 -8.2 Protein O₂ limited -9.7 -1.7 2.8 -8.6 Protein H₂ limited -1.7 -16 2.8 -16 -1.7 17.3 67% Rumen Protein -18 2.8 -17 67% Rumen Methanotroph -20 -1.7 2.8 -19 67%Rumen Methanotroph +N₂O -28 -1.7 2.8 -27 NA

Table 8 Modelling Assumptions for GWP embodied Clean Wool Fibre

In summary this background data shows fleece GHG most sensitive to polymer and rumen microbial chemistry. More evidence is vital to reveal which best fits a particular herd, rumen, soil or forage type.

Furthermore, more evidence, is vital to show if upper result inclusion of embodied N₂O fits upland station wool production in marginal land grazing across New Zealand, Australia, South Africa, PR China and USA.

Background and Primary LCA Data Included and Excluded in this EPD

This EPD declares the lowest embodied GWP wool protein estimate considering no significant land use change since 1925. Pasture drawdown was modelled on CSIRO fodder intake of 33% foraging. It also includes lowest soil drawdown from on-site testing. The 7.7% mass fleece share was reduced for flocks grazing on marginal upland in New Zealand to 5.7% as wool insulation reduces winter heat loss 25% of the year.

¹⁶ Characterisation factors from 2021 Intergovernmental Panel on Climate Change (IPCC), AR 6 Climate Change, https://www.ipcc.ch/

Environmental Impact Terminology

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

Global warming forcing climate change	Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening " <i>climate emergency</i> ".
Ozone layer depletion	Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons (HCFC), chlorobromomethane, hydrobromofluorocarbons, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the " ozone hole " reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.
Acidification	Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of " <i>acid rain</i> " are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning fossil fuels polluting precipitation of rain and snow worldwide.
Eutrophication of terrestrial, freshwater and marine life	Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH ₄) and phosphorus (P, PO ₄ ³⁻) in rain run-off over-fertilised land catchments.
Photochemical ozone creation	Tropospheric photochemical ozone, called " <i>summer smog</i> " near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.
Depletion of minerals, metals & water	Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement " <i>extinction rebellion</i> " calls on adults to secure climate, reserves and biodiversity for current and future generations.
Depletion of fossil fuel reserves	Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching " <i>peak oil</i> " acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.

Environmental Parameters and Methods

Table 9 lists methods and parameters for environmental impact, resource use and waste output. Table 10 lists results for environmental impact, resource use and waste output per functional unit. As there were no flows for module B1, B4, B5, B6, B7 and C3 all their LCA results are zero.

Table 9 Environmental Parameters, Units and Methods Description Parameter Acronym Unit **Method Description Environmental Impact Climate Change biogenic** GWP sequestered from air [10] GWPb kg CO_{2eq} **Climate Change luluc** GWPI kg CO_{2eq} GWP land use & change [10] **Climate Change fossil** GWPf kg CO_{2eq} GWP fossil fuels [10] **Climate Change total** GWPT kg CO_{2eq} Global Warming Potential [10] **Stratospheric Ozone Depletion** ODP kg CFC_{11e} Stratospheric Ozone Loss [11] **Photochemical Ozone Creation** POCP kg NVOC Summer Smog [12] **Acidification Potential** AP mol H⁺ _{eq} Accumulated Exceedance [13] **Eutrophication Freshwater** EPF kg P _{eq} Excess freshwater nutrients [14] **Eutrophication Marine** EPM kg N _{eq} Excess marine nutrients [15] **Eutrophication Terrestrial** EPT mol N _{eq} Excess nutrients to land [16] **Fossil Depletion** ADPF MJ_{ncv} Abiotic Depletion fossil fuel [17] **Mineral and Metal Depletion** ADPE kg Sb_{eq} Abiotic Depletion minerals [18] Water Scarcity Depletion WDP $m^3 WDP eq$ Water Deprivation Scarcity [19,20] **Resource Use** Net Fresh Water FW m³ Lake, river, well & town water **Secondary Material** SM kg Post-consumer recycled Material **Renewable Secondary Fuel** RSF MJ ncv PCR biomass burnt **Non-renewable Secondary Fuel** NRSF MJ ncv PCR fossil feedstock & fuel use **Primary Renewable Material Energy** Biomass feedstock material retained PERM MJ nev **Primary Renewable Energy** PERE MJ ncv Renewable energy and biomass fuel **Total Primary Renewable Energy** PERT MJ nev Total renewable energy & biomass fuel **Primary Non-renewable Material** PENRM MJ nev Fossil feedstock material retained **Primary Non-renewable Energy** PENRE MJ nev Fossil fuel burnt **Total Primary Non-renewable Energy** PENRT MJ ncv Total fossil energy and feedstock use Waste Output **Hazardous Waste Disposed** HWD kg Reprocessed to contain risks **Non-hazardous Waste Disposed** NHWD Municipal landfill facility waste kg **Radioactive Waste Disposed** RWD kg Most ex nuclear power stations **Components For Reuse** CRU Product scrap for reuse as is kg **Material For Recycling** MFR kg Factory scrap to remanufacture **Material For Energy Recovery** MER kg Factory scrap use as fuel

EEE

EET

MJ ncv

MJ ncv

Exported Energy Electrical

Exported Energy Thermal

Uncommon for building products

Uncommon for building products

Results Module A and B

Table 10 lists Module A and B environmental impact, resource use and waste results per functional unit.

Parameter	Produce	Deliver	Construct	Maintain	Repair
/Module	A1-3	A4	A5	B2	B3
Environmental Impact					
Climate Change biogenic	-9.7	-1.0E-06	-0.24	-2.4E-05	-1.1E-04
Climate Change Iuluc	-1.7	1.1E-04	0	-7.3E-04	7.1E-04
Climate Change fossil	2.8	1.1E-02	7.1E-02	7.4E-04	7.1E-06
Climate Change total	-8.6	1.1E-02	-0.21	-2.1E-05	6.1E-04
Stratospheric Ozone Depletion	3.4E-09	1.7E-13	8.4E-11	3.3E-12	8.4E-15
Photochemical Ozone	0	8.1E-05	0	3.0E-06	0
Acidification Potential	0	8.3E-06	0	1.2E-06	0
Eutrophication Freshwater	4.8E-05	4.9E-10	1.2E-06	7.1E-10	1.2E-10
Eutrophication Marine	0	1.5E-06	0	2.1E-07	0
Eutrophication Terrestrial	0	5.3E-06	0	1.5E-06	0
Fossil Depletion	4.7E-04	7.2E-06	1.2E-05	3.4E-07	1.2E-09
Mineral and Metal Depletion	1.6	1.3E-02	4.2E-02	4.9E-04	4.2E-06
Water Scarcity Depletion	9.3E-03	2.3E-06	2.3E-04	1.1E-05	2.3E-08
Resource Use					
Net Fresh Water	5.7E-02	1.4E-05	1.4E-03	6.6E-05	1.4E-07
Secondary Material	0	9.0E-07	0	0	0
Renewable Secondary Fuel	2.4E-02	6.8E-06	5.0E-03	8.1E-05	5.9E-08
Non-renewable Secondary Fuel	7.1E-02	7.4E-04	1.8E-03	1.4E-03	1.8E-07
Primary Renewable Material Energy	42	2.4E-03	1.1	7.4E-03	1.1E-04
Primary Renewable Energy	7.3	3.0E-04	0.18	7.7E-02	1.8E-05
Total Primary Renewable Energy	50	2.7E-03	1.2	8.5E-02	1.2E-04
Primary Non-renewable Material Energy	6.3	0.19	0.16	6.5E-02	1.6E-0
Primary Non-renewable Energy	21	0.11	0.54	5.3E-02	5.4E-0
Total Primary Non-renewable Energy	27	0.30	0.70	0.12	7.0E-05
Waste Output					
Hazardous Waste	1.5E-03	2.1E-05	3.9E-05	1.1E-06	3.9E-09
Non-hazardous Waste	4.3E-02	1.7E-04	1.1E-03	1.1E-04	1.1E-07
Radioactive Waste	2.5E-17	8.9E-32	6.3E-19	2.5E-20	6.3E-23
Components For Reuse	1.6	1.0E-05	4.0E-02	4.1E-11	4.0E-06
Material For Recycling	2.2E-05	2.3E-07	5.7E-07	3.7E-08	1.0E-04
Material For Energy Recovery	2.2E-02	5.5E-06	5.4E-04	8.3E-05	5.4E-08
Exported Energy Electrical	0	0	0	0	0
Exported Energy Thermal	0	0	0	0	0

Results Module C and D

Table 11 lists Module C and D environmental impact, resource use and waste results per functional unit.

Parameter	Demolish	Transport	Dispose	Reuse	Recover	Recycle	
/Module	C1	C2	C4	D1	D2	D3	
Environmental Impact							
Climate Change biogenic	-1.2E-05	-1.0E-06	3.5	7.3	-1.8E-05	0.24	
Climate Change Iuluc	-5.3E-05	5.9E-05	-3.0E-05	1.3	0	4.3E-02	
Climate Change fossil	1.8E-03	6.1E-03	5.9E-05	-2.1	2.4E-04	-7.0E-02	
Climate Change total	1.8E-03	6.2E-03	3.5	6.4	2.2E-04	0.21	
Stratospheric Ozone Depletion	7.7E-17	1.1E-13	4.6E-13	-2.5E-09	5.4E-13	-8.4E-11	
Photochemical Ozone	7.1E-06	6.0E-05	1.1E-06	0	9.3E-07	0	
Acidification Potential	3.2E-06	5.1E-06	2.4E-04	0	4.0E-07	0	
Eutrophication Freshwater	3.5E-13	3.1E-10	4.4E-10	-3.6E-05	1.2E-10	-1.2E-06	
Eutrophication Marine	5.8E-07	9.4E-07	1.7E-08	0	7.0E-08	0	
Eutrophication Terrestrial	3.8E-06	3.2E-06	1.3E-07	0	4.8E-07	0	
Fossil Depletion	9.2E-12	4.0E-06	2.2E-08	-3.5E-04	5.7E-08	-1.2E-05	
Mineral and Metal Depletion	7.9E-04	7.5E-03	3.8E-05	-1.2	1.3E-04	-4.0E-02	
Water Scarcity Depletion	8.3E-08	1.4E-06	6.2E-07	-7.0E-03	1.8E-05	-2.3E-04	
Resource Use							
Net Fresh Water	5.1E-07	8.7E-06	3.8E-06	-4.3E-02	1.1E-04	-1.4E-03	
Secondary Material	8.1E-07	6.0E-07	9.4E-08	0	0	0	
Renewable Secondary Fuel	4.3E-05	9.2E-05	6.7E-08	-1.8E-02	3.8E-05	-5.9E-04	
Non-renewable Secondary Fuel	4.3E-10	4.8E-04	8.1E-07	-5.3E-02	7.7E-06	-1.8E-03	
Primary Renewable Material Energy	2.2E-03	2.0E-04	-2.2E-02	-32	2.0E-04	-1.1	
Primary Renewable Energy	1.4E-09	1.6E-03	2.5E-02	-5.5	2.9E-04	-0.18	
Total Primary Renewable Energy	2.3E-03	1.9E-03	3.0E-03	-37	5.2E-04	-1.2	
Primary Non-renewable Material	1.6E-02	6.3E-02	1.8E-04	-4.7	3.2E-04	-0.16	
Primary Non-renewable Energy	2.5E-04	3.7E-02	4.3E-04	-16	2.1E-03	-0.53	
Total Primary Non-renewable Energy	1.7E-02	0.10	6.1E-04	-21	2.4E-03	-0.69	
Waste Output							
Hazardous Waste	6.5E-08	1.2E-05	1.2E-07	-1.1E-03	1.9E-07	-3.8E-05	
Non-hazardous Waste	1.7E-06	9.6E-05	1.8E-05	-3.2E-02	1.8E-05	-1.1E-03	
Radioactive Waste	9.7E-38	7.0E-32	8.7E-21	-1.9E-17	4.1E-21	-6.3E-19	
Components For Reuse	1.0E-05	1.0E-05	1.4E-15	-1.2	1.0E-05	-4.0E-02	
Material For Recycling	2.6E-13	1.5E-07	2.5E-02	-1.7E-05	6.1E-09	-5.5E-07	
Material For Energy Recovery	2.0E-05	3.9E-06	6.8E-08	-1.6E-02	1.5E-05	-5.4E-04	
Exported Energy Electrical	0	0	0	0	0	0	
Exported Energy Thermal	0	0	0	0	0	0	

Interpretation

Cradle to Gate A1 to A3/functional unit

Embrace wool felt acoustic insulation panel Greenhouse gas (GHG) Global Warming Potential (GWP) kgCO_{2e} /kg functional unit results cradle to gate for various assumed wool chemical components. Figure 7 charts component type versus GWP. Here GWP varied directly with assumed and embodied molecules, particularly methyl, methylene and carboxyl groups. The polyamide had least GWP, then methionine and Protein (O_2 ltd) all in close agreement. Better negative GWP was found from group of the

- Hydrogen limited protein,
- 67% methane-rich rumen protein with 33% grass sequestered CO2e-rich sugars and
- 67% methane-rich Methanophile rumen protein 33% grass sequestered CO_{2e}-rich sugars,

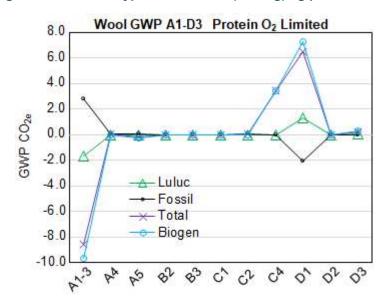



Figure 7 Feedstock type versus GWP (CO_{2e}kg)/kg product.

Cradle to Grave A4 to D3 /functional unit

This EPD declares low range results from modelling Oxygen limited protein flows embodied in Embrace wool felt results cradle A1 to D3 fates beyond the system boundary. Figure 8 shows that overall total GWP results are best A1 to A3. They are worse in C2 trucking to landfill and C4 disposal via combustion but worst in reuse avoiding new wool product. Biogenic GWP is best A1 to A3, worse in C2 and C4 but worst in D1. Luluc GWP is best A1 to A3 and worst in D1 reuse. Fossil fuel GWP use is highest from A1 to A3, then lowest in D1 reuse.

Figure 8 Feedstock type versus GWP (CO_{2e}kg)/kg product.

Methods and Data

Life Cycle Assessment Method

LCA Author	The Evah Institute, <u>https://www.evah.institute</u>
Study Period	Factory data was collected from 2023 to 2025
LCA Method	ISO 14040 & ISO 14044 Standard Compliant
LCIA method	ReCiPe 2016 Life Cycle Impact Assessment
Scope	Cradle to fate including all supply chain phases and stages depicted in Figure a.
Phases	The LCA covered all known flows in all known stages cradle to end of life fate.
Assumptions	Use is to typical Australian Facility Mangement Association professional practice.
Scenarios	Use, cleaning, maintenance plus disposal and re-use were scenario-based using Facility Management Association denoted and published typical operations.
Processes	All known processes are included from resource acquisition, water, fuel & energy use, power generation & distribution, freight, refining, intermediates, manufacture, scrap re-use, packing and dispatch, installation, use, maintenance and landfill.
	All significant waste and emission flows from all supply chain operations used to make, pack and install the product are included.

Evah industry databases cover all known domestic and global scope 1 and 2 operations.

They exclude scope 3 burdens from capital facilities, equipment churn, noise and dehydration as well as incidental activities and employee commuting.

Electricity supply models in active databases are updated annually. As each project is modelled and new data is available the databases are updated.

They are then audited by external Type 1 ecolabel certifiers.

The databases exist in top zones of commercial global modelling and calculating engines.

Quality control methods are applied to ensure:

- Coverage of place in time with all information for each dataset noted, checked and updated;¹⁷
- Consistency to Evah guidelines for all process technology, transport and energy demand; ¹⁸
- Completeness of modeling based on in-house reports, literature and industry reviews;
- Plausibility in 2 way checks of LCI input and output flows of data checked for validity, plus
- Mathematical correctness of all calculations in mass and energy balance cross checks.

¹⁷ Jones D G (2004) LCI Database for Commercial Building Report 2001-006-B-15 Icon.net, Australia ¹⁸ Evah Tools, Databases and Methodology Queensland, Australia at http://www.evah.com.au/tools.html

Evan Tools, Databases and Methodology Queensiand, Australia at http://www.evan.com.au/tools.nth

Data Sources Representativeness and Quality

Primary Data

Primary data used for modelling the state of art of each operation includes all known process for:

- Technology sequences •
- Energy and water use •
- Landfill and effluent, plus •
- Reliance on raw and recycled material •
- High and reduced process emissions
- Freight and distribution systems.

Electricity mix is site location-based throughout as per the PCR. All applied background databases and software versions are declared. Cut-off criteria complies with EN 15804:2012+A2:2019. Table 9 defines all characterisation factor versions. No primary data set with >±30% uncertainty is used. No data from EcoInvent was used. Primary data is sourced from client annual reports and publications on corporate locations, logistics, technology use, market share, management systems, standards and commitment to improved environmental performance. Information on operations is also sourced from client:

- Supply chain mills •
- Factory site development license applications
- Supplier technical manuals
- Manufacturing specifications •
- Manufacturer websites •
- Corporate annual reports and •
- Industry sector experts

Background supply chain data

Background data is sourced from

- The International Energy Agency
- **IBISWorld** •
- **USGS** Minerals •
- Franklin Associates .
- Boustead 6 .
- Plastics Europe, •
- CML2
- Simapro 9.5 •
- Ecolnvent 3.9 and •
- NREL USLCI model databases

Information on operations is also sourced from:

- Library documents •
- NPI and web searches •
- **Review papers** •
- **Building manuals**
- Global industry association and •
- Government reports on best available technology (BAT).

For benchmarking, comparison and integrity checks inventory data is developed to represent best available technology (BAT) and business as usual (BAU) operations covering industry sector supply and infrastructure in Australia and overseas. Such technology, performance and license conditions were modelled and evaluated across mining, farming, forestry, freight, infrastructure and manufacturing and building industry sectors since 1995.

As most sources do not provide estimates of accuracy, a pedigree matrix of uncertainty estimates to 95% confidence levels of Geometric Standard Deviation squared (σ_g) is used to define previously stated data quality on Page 7 in Table a.¹⁹

¹⁹ Evah Institute data quality control system accords with UNEP SETAC Global LCI Database Quality 2010 Guidelines

Supply Chain Modelling Assumptions

Australian building sector rules and Evah assumptions applied are tabled below

Scope Boundaries	Assumptions and Metadata
Quality/Domain	National including Import and Export
Process Model	It is typical currently most common industrial or best (BAT) technology practice.
Resource flows	LCI uses regional data for resource mapping, fuels, energy, electricity & logistics.
Temporal	Project data collated over prior 4 years but represents the last year averages.
Geography	Jurisdiction is for declared client, site, regional, national, Pacific Rim then Europe.
Representation	Representing the declared client', suppliers and energy providers to each cradle.
Consistency	All known operations are modelled according to operations with closest proximity.
Technology	Industry supply chains modelled are typical recent Pacific Rim practice.
Functional Unit	Applies 20 or 60 year typical service life period, use, cleaning & disposal/kg or m ² .
System Control	
Primary Sources	Client' supplier mills, publications, websites, specifications and manuals are used.
Other Sources	Recent IEA, GGT, Simapro, IBIS, Ecolnvent sources used and cited in LCA reports.
Data mix	Power grid and renewable shares are updated according to latest IEA reports.
Operational	Company data is used for process performance, product share, waste & emissions.
Logistics	Local data is used for power, fuel mix, water supply, logistics share & capacity.
New Data Entry	New data is entered by current researchers at Malaika LCT, Evah and GGTI.
Data Generator	All current cited manufacturers, Evah, GGTI, IBIS & others & in LCA reports.
Data Publisher	Publishers include the Evah Institute, GGTI and designated clients only.
Contributors	All professional and personal contributors cited in Evah & GGTI records.
Data Flow & Mix	
System Boundary	All known resources & emissions modelled from Earth cradle to end of life fate.
System flows	All known flows modelled from/to air, land, water & community sources & sinks.
Capital inclusions	Natural stocks Δ , industry stockpiles Δ , capital wear Δ , system losses & use.
Arid Practice	Dry technology adopted; Water use is factored by 0.1 as for e.g. mining.
Transportation	Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance.
Industrial	Company or industry sector data for manufacturing & minerals involved.
Mining	All resource extraction is based on Australian or Pacific Rim technology.
Imported fuel	Fuel mix is from nearest UAE, SE Asian, Canadian or New Zealand sources.
Finishes	Processing inputs with finishing burdens are factored in or that is denoted.
Validation	
Accuracy	10^{th} generation study is ± 5 to 15% uncertain due to some background data.
Completeness	All significant operations are tracked and documented from cradle to grave.
Precision	Tracking of >90% flows apply a 90:10 rule sequentially to 99.9% & beyond.
Allocation	All allocated to co products on reaction stoichiometry by energy or mass fraction.
Burdens	Includes all known resource use from & emissions to community air, land & water.
Plausibility	Results are checked and benchmarked against BAT, BAU & worst practice.
Sensitivity	Calculated U is reported & compared to Bath U RICE & Ecolnvent libraries.
Validity Checks	Checked versus Plastics Europe, Bath U RICE & or Industry LCA Literature.

References

- [1] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations Principles and procedures
- [2] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- [3] GreenTag[™] 2024 EPD Program, Product Category Rules <u>https://www.globalgreentag.com/epd-program.html</u>
- [4] Cottle DJ, Cowie AL 2016. Allocation of greenhouse gas production between wool and meat in the life cycle assessment of Australian sheep production. I J LCA 21(6):820-830.
- [5] Dougherty HC, Oltjen JW, Mitloehner FM, DePeters EJ, Pettey LA, Macon D, Finzel J, Rodrigues K, Kebreab E 2018. Carbon and blue water footprints of California sheep production. Journal of Animal Science 97(2):945-961.
- [6] Ledgard SF, Falconer, S, Mazzetto A. 2021. Carbon footprint of New Zealand beef and sheep meat exported to different markets. Report for the Meat Industry Association and Beef+Lamb New Zealand (NZ). RE450/2021/006. AgResearch, Hamilton, NZ. 81p
- [7] Peri PL, Rosas YM, Ladd B, Diza-Delgado R, Pastur GM 2020. Carbon Footprint of Lamb and Wool Production at Farm Gate and the Regional Scale in Southern Patagonia. Sustainability 12:3077.
- [8] Wiedemann SG, Yan MJ, Henry BK, Murphy CM 2016. Resource use and greenhouse gas emissions from three wool production regions in Australia. Journal of Cleaner Production 122:121-132.
- [9] Wiedemann SG, Ledgard SF, Henry BK, Yan MJ, Mao N, Russell SJ 2015. Application of life cycle assessment to sheep production systems: investigating co-production of wool and meat using case studies from major global producers. I J of LCA 20(4):463-476.
- [10] Intergovernmental Panel on Climate Change (IPCC), Assessment Report 6 Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/
- [11] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014
- [12] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H., Van de meent, D. 2008, European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment, J O Atmospheric Environment 42(3):441-453, as applied in ReCiPe LOTOS-EUROS. DOI: 10.1016 /j.atmosenv.2007.09.072
- [13] Seppälä, J., Posch, M., Johansson, M. and Hettelingh, J-P. 2006 Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, T Int J O LCA 11(6):403-416 Nov 2006 DOI:10.1065/lca2005.06.215
- [14] Posch, M., Seppälä, J., Hettelingh, J-P., and Johansson, M., (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, Sept 2008, I J of LCA 13(6):477-486., DOI:10.1007/s11367-008-0025-9
- [15] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009). ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1st Ed
- [16] CML–IA V4.1 LCA methodology, 2002, October 2012, CML University of Leiden, Netherlands
- [17] Guinée et al., 2002, and van Oers et al., 2002 CML LCA methodology 2002a, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands
- [18] Boulay, A-M., Bare, J., Benini, L., Berger, M., Lathuilliere, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A., Ridoutt, B., Oki, T., Worbe, S., Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). I J of LCA. 23. 1-11. DOI 10.1007/s11367-017-1333-8
- [19] Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative
- [20] Di Sacco, A., et al., Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery & livelihood benefits. Global Change Biology, 2021. 277: p.1328-1348. DOI 10.1111/gcb.15498

Environmental Product Declaration:Benefit Addendum

Nature Positive+ EPD :BA Declaration Compliance beyond EN 15804+A2, ISO 14025 ISO 21930

Autex Industries Pty Ltd 702 to 718 Rosebank Road Avondale, Auckland, New Zealand

Embrace Wool Felt Panels

Part 6 Nature Positive Assessment

The United Nations (UN) Nature Positive (N+) Program provides global impetus for EPDs to consider gain versus loss in climate and biodiversity security [27, 28, 29]. But the reach of most LCIA methods such as the leading ReCiPe is modelling damage and depletion from maxima to zero as depicted on the left-hand side of in Figure 7 [29, 30, 31, 32].

Conventional LCIA models environmental damages to e.g. climate and loss of human health, ecosystem quality and resource supply [32, 33].

The reach of N+, however extends scientific sightlines beyond zero damage to quantify benefits, gains and regeneration [33, 34], 35. Other information in N+ EPDs sight beyond damage to define additional information on net-positive benefit outcomes including many gains depicted on the right-hand side of Figure a [30 to 32].

Figure 4 depicts the ReCiPe LCIA method modelling damage, depletion and loss versus the Evah Life Cycle Benefit indicators (LCBA) method modelling benefit, repletion and gain to assess net-loss and net-gain of

- climate security,
- human wellness and
- resource supply viability [33 to 36].
- Add gain to capacity Reduce loss to zero Ozone Loss +1 Organics Ozone recovery Chemicals Hazard dose Ozone Probiotics Ozone OH&S savings CFC, VOC Depletion Absorbed dose Repletion Nutrients Dose shields PAH Infrared forcing Climate Repair Adsorbate Air Quality Clean air days Human Wellness Gain CO_{2biogenic} Nucleotide Hazard & dose Depletion Ozone shielding Lost Air Quality Repair Recycled Dust PM2.5 & 10 dose Climate Change Human Infrared relaxed CO₂ Compost Smog dose Health. Biocides Biogenic Species richness Terrestrial Repletion SO2, Base saturation Terrestrial Biota Habitat richness NOx, Depletion Occupied area Minerals Gain net Regenerated area Land Use Lost Marine Habitat Richness Marine Occupied area Biomineral Ecosystem & Species Repletion Regenerated area Minerals Depletion Reuse sum Transform area Biomass Regenerated sea Riparian Repletion Riparian Depletion Land Use P Hazard dose Regenerated river Water Use Cd Algal growth Marine richness Biomass Fossil Fuel Algal growth Gain Freshwater Freshwater Repletion Lost Resilient Benthos bounty Wind Resource Hazard & dose Depletion Water Solar Riparian bounty Fossil Fuel Seawater Food Reduce supply Fossil Fuel Security Reuse cascade Sewerage Depletion Feedstock Energy content Feedstock Repletion lons Renew feedstock Mineral -1 Recyclate Reduce supply Depletion Reuse cascade

Figure 4 ReCiPe LCIA of damaging loss versus Evah LCBA of beneficial gain

Such extended assessment is applicable to empower communication and reduce barriers for regenerative and nature-positive initiatives. LCA of benefits offers community, government and business a new environmental science tool with examples of methods to measure gains in accelerating restoration and climate security.

Using LCBA in conjunction with conventional LCIA modelling of damages allows LCA modelling of damages to and beyond of zero climate, health, ecosystems and supply losses to beneficial gains in e.g. climate, wellness, biodiversity and supply security.

Reaching to quantify and show positive gains well beyond the negative and zero loss outcomes, LCBA enables a truer market assessment. The capacity to report positive metrics can also reduce prevalent greenwashing and reliance on bad news that has disempowered scientifically valid communications and efforts to engage community action.

Environmental Benefit Terminology

Key environmental benefits contributing to ecological regeneration of climate and biodiversity security are tabled below with common names and responses for each indicator.

Climate Security	Reliance on renewable energy is vital to restore thermal energy differentials, from equator to poles. Differential forcing of ocean current and wind circulation blends and regulate climate to reduce extreme weather events. Forest, wilderness and algal growth can drawdown such gasses. Carbon banked in standing forests, detritus, roots and soils brakes climate change. Greenhouse gas <i>d</i> rawdown and sequestration in product biomass is vital for " <i>Climate security</i> ".
Water Security	"Water security arises from conservation and recycling as well as reliance on renewable and reclaimed biomass to avoid climate-change-induced drought. Hectares of intensive forest and plantings stabilise rain catchment and ground water table levels. Ground mulches retain soil hydration and reduce water stress.
Ozone Repletion	Repairing the planet's stratospheric ozone solar shield protects plants, humans and animals allowing them to be sun-safe " for longer in the outdoors. Ground level oxygenation via growing plants and algae is a chief way to enable accumulation higher level naturally-formed Ozone. Restoring the ozone layer also depends on use of ozone- safe refrigerants, aerosols and solvents
Buffered air, land and waters	Acid rain-free air-sheds are safer for natural terrestrial, aquatic and urban communities. Buffered air-pH supports healthy soil and waterways, nitrogen fixation vital for plant growth and natural decomposition. Safe pH supports health of fisheries, forests, buildings and materials. Chief ways to enhance " <i>natural-rain</i> " are reliance on renewable fuels and power supply.
Oxygenated terrestrial and aquatic life	Nutrient and oxygen availability balances in natural waters promotes healthy plant growth, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief ways to enhance healthy waterways is to tightly control slow-release fertilisers avoiding synthetic nutrients in rain run-off land catchments.
Sweet-air	Smog-free air in summer near ground level when most people live and breathe outside is generated by plants and avoiding or filtering pollutants. Sweet-air enables healthy vegetation, crops and humans to thrive. Chief ways to enhance sweet-air are reliance on low-emission renewable energy and non-volatile chemicals.
Resource Repletion	The extinction rebellion youth movement calls on governance to secure climate, material reserves and biodiversity for current and future generations. Chief ways to ensure resource repletion include investing in sustainably managed "circularity" , recycling, renewables and reclaimed biomass. This retains accessible, plentiful, essential valuable raw material, medicinal, chemical, feedstock and fuel stock.
Biodiversity Security	 Extensive bushland, biodynamic and organic agriculture plus standing forests offer natural land use ranges and corridors for wildlife, herds and flora "biodiversity": habitat bird, bee, pollinator, avian, worm biome, shelter, forage and grazing leaf & litter forage enhance soil condition, mulch, nutrition and retention, soil microbiota, detritus-feeders and biotic refuges reduce temperature stress CO_{2e} sequestered in natural habitat, biomass & soil braking climate change.
Ecological Wellness	Human ecological health benefits flow from reliance on renewable and reclaimed biomass instead of fossil fuel. Chief ways to enhance "wellness" include avoiding particulates and pollution, smog, volatile organics and carcinogens. Climate and ozone security and safer air-sheds ensue for natural terrestrial, aquatic and urban communities.

Life Cycle Benefit Assessment Reference Framework

This section summarises the LCBA framework of measures metrics and indicators. Local and global human wellness, habitat regeneration and supply resilience and circularity outcomes are framed against United Nations Sustainable development goals (UN SDG)s [16 to 32]. LCBA reaches beyond zero loss to show gains in climate, wellness, biodiversity and supply security.

Benefit Layer	Exposure & Jurisdiction	Unit/annu	Local	Global	UN	Circularity
Healthy Able Life Years (HALY)		HALY/capit	HALY/capita		SD	% Capacity
Local Shelter	Household shelter	m² GFA	Housed	UN _{eq}	1 Л׆†÷Ť	Housing
Fresh Food	Affordably nourished	kJ UN _{eq}	Well Fed	UN _{eq}	2 (((Nutrition
Fresh Air	Oxygen indoors	kg O ₂	Oxygen	O2 C1750	<u>³</u> ⁄√∕•	Oxygenation
Clean Air	PM _{2.5} dust-free	µg PM2.5	Clean Air	PM c1750	<u>3</u> ⁄√∕⊷	Decongestion
Sweet Air	VOC free indoors	µg VOC	Safe Air	VOC C1750	<u>3</u> √√	Inhalation
Sun Safety	Ozone layer repair	kg O _{2 outdoors}	Sun Safe	O _{3 C1750}	<u>3</u> √√	Ozonating
Time in Nature	100 days recreation pppa	R&R Ha	Relaxed	Ha _{C1750}	<u>3</u> ///	Free-time
Medical Access	Paramedic Care	hours aid	Paramedic	hours to aid	4	Medic-access
Work Dignity	>30hrs paid work/week	\$ _{eq/} hour	Working	km UN _{eq}	⁵₫	Secure-work
Fresh Water	Potable rain hydrated	m ³	Rainwater	rain c1750	6	Potabability
Supply Energy	& Resource Viability	SERV/capit	а	metric		% Capacity
Viable Water	Refill local reservoirs	m ³ freshwater	Watered	Rain _{C1750}	⁶ 🟹	Freshwater
Viable Air	Photosynthetic Cities	kg O _{2e100}	Breathable	O2 C1750	7.ď	Oxygenation
Viable C-bank	Resink Carbon in product	kg CO _{2e100}	C banks	CO _{2e100}	7-0-	Bank-carbon
Viable Energy	Reliance on renewable	kg _{renewed}	Renewing	oil _{eq}	7.0-	Renewability
Viable Food	Reliance on local food	kJ _{km}	Fed Local	UN _{eq}	8	Food autonomy
Viable Supply	Refuel local reserves	kg _{feedstock}	Fuel stock	oil _{eq}	9	Autonomy
Viable Mineral	Recycle scarce material	MJ elemental	Abundancy	oil _{eq}	10,€►	Mineral security
Viable Feedstock	Recycle material & scrap	MJ _{recycle}	Recycled	oil _{eq}	10 (Recyclability
Viable Disaster	Reserved sustenance	t _{back-up}	Security	UN _{eq}		Recoverability
Viable Shelter	Refuges in disasters	bed _{pc}	Sheltered	GFA		Safe havens
Positive Ecosy	stem ReFormation (PERF)	PERF/Ha		C1750 mark		% Capacity
Natural Access	Nature parks & tracks	m² R&R	Access	Local reach	12 C/O	Natural Access
Urban Bounty	Pre-urban carrying capacity	t flora/GFA	Species	capacity	12 CO	Greenspace
Soil Carbon	Carbon banking	kg CO _{2e20}	Soil C	kg CO _{2e20}	13	Soil-Carbon
Climate Brakes	Carbon drawdown	t CO _{2e20}	Climes	Worms		Climate safety
Plants & Algae	Carbon drawdown	t CO _{2e100}	Biomass	Algae	13	Climate security
Aquatic Stock	Species rich range	t frog stock	Species	Frogs	14	Aquatic bounty
Marine Stock	Species richness & range	t fish stock	Species	Whales	14	Marine bounty
Wildlife Habitat	Corridor & refuge range	biomes	Species	Apex _{species}	14	Linked Ranges
Terrestrial Stock	Rich flora & fauna range	t Terrastock	Species	Bears	15	Wildlife rich
Avian Stock	Species rich refugia	t Avistock	Richness	Birds	¹⁶	Abundance
Pollinator stock	Species richness & range	t Beestock	Species	Bees	¹⁶ 🗲	Biodiversity
Nature Reserve	Scarce reserves restocked	t Reserve	Resources	Capacity	178	Reserves

Global GreenTag^{Cert™} EPD Program Environmental Product Declaration ISO 14025, EN15804+A2 2019 Compliant Autex Acoustics® Embrace Wool Felt Panels

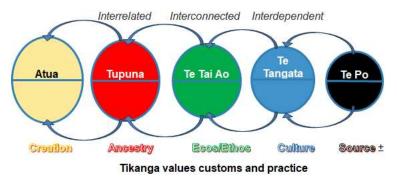
Otari Station

The sheep wool is from Otari Station's 10,000 acres of land ranging from fertile and productive river flats rolling to steep hill country peaking at 700m. It hosts sheep, cattle, forests, original vegetation reserves and bee hives producing manuka honey. Yearly it hosts the mountain bike and trail run to raise funds for Hunterville School²⁰. Otairi Station also hosted the main events at the Otairi-Pukeroa dog trials in 2025.

Otairi follows the Managapapa River to its confluence with the Turakina River, offering majestic views of Mount Ruapehu Wangaui River depicted inset ²¹ Much flora in the river basin is broadleaf and podocarp forest with understories of crown and other ferns and a variety of shrubs. The river and its tributaries are

home to invertebrates such as mayflies, stoneflies and caddis flies. Blue duck populations are found at the junction of the Whanganui River and Mangatepopo and Okupata streams. The Nankeen night heron roosts along the Whanganui River and breeds in New Zealand only here.

Native fish species in the river include Cran's bully, upland bully, climbing galaxias, longfin and short-finned eels, pouched lamprey, shortjaw kokopu, torrent fish, New Zealand smelt and black flounder. Other native aquatic species include koura and declining numbers of New Zealand freshwater mussels.


Values of the Ngati Manawa,

Otairi Station has 2324 hectares subject to Māori ahikaroa hearth-land rights under the Ngati Manawa: Tawhiuau Mountain and Rangitāiki river guardians. Their principles to avoid harm or reduce value include:

- protection of wahi tapu (lands), indigenous flora and fauna and its wider environment;
- recognition of its mana (life force), kaitiakitanga (guardianship) and tikanga (customs);
- respect for tikanga historical, social, cultural and maunga (mountain's) spiritual significance;
- encouraging respect for their association with their sacred maunga,
- accurate portrayal of their association with Mount Tawhiuau and recognising their
- relationship with wahi tapu (spiritual places) and their wahi whakahirahira (vital significance)

Figure 5 depicts the Ngati Manawa world view, foundation and interaction of people and environment.

Te Po the source of creation balances positive and negative elements of interdependent realms to maintain dependant ecology.

Te Tangata, their organisation, has an iwi, of interdependent kinship groups with separate responsibility.

Te Tai Ao, the environment created by separating sky and earth links spiritual and physical realms. Interdependent ethos, ecosystems and practises include place to belong, hearth-land rights and selfdetermination. Survival depends living and working in harmony with Te Tai Ao.

Tupuna or ancestors imparted

Figure 5 Ngati Manawa World View

knowledge of and environmental responsibilities to Atua. Their guardians' knowledge of how and what we down as passed down through song, story-telling and conversation.

Atua are Māori gods and spirits controlling and creating environments. Ngāti Manawa are guardians of the Tawhiuau Mountain and Rangitāiki river. From Atua, they are responsible to maintain and care for all inhabitants and components. Their methods and protocols are embodied in their being, thinking and doing, an inherent part of their self-determination and ancestry. All this is monitored and protected by their elders' advice and guidance.

²⁰https://store.pggwrightson.co.nz/knowledge-hub/an-enduring-connection-to-the-land-sees-otairi-station-thrive ²¹ https://en.wikipedia.org/wiki/Whanganui_River

Contemptorary Natural and Social Disasters

In the data period that this LCA covers, many worst-ever-recorded and widespread natural and social disasters also disrupted supply chains locally nationally and globally.

After recent widespread worst-ever recorded natural and social disasters, few benefits were expected for the geographical area where most product components were sourced.

In the last decade many reports describe historic social and natural disasters and their impacts on natural land, bush, urban, air and aquatic and marine environments [32].

Regenerative imperitives

Despite compelling positive results shown in the following section they also illustrate that nature positive outcomes are imperatives for regeneration to combat recent natural disasters attributable to anthropogenic climate change [15].

So after a decade of increasingly widespread worst-ever recorded local, national and global, natural and social disasters disrupted security no benefits were expected from:

- urban stock of flora in parks, walls and greenspace for urban life.
- aquatic stock of frogs in rivers, lakes and dams, aquatic life and
- marine and fish stock in nearby estuaries, bays and oceans for marine life.
- ٠

Life Cycle Benefit Assessment

Some materials and practices inherently promote wellness and like medicine others inherently destroy illness. Positive and net-positive gains and benefits can offset damages and loss.

Benefits from less and avoided impacts and gains arising from properties inherent within a component or utility can also be additive.

The ultimate source of metabolic energy for all biological systems, photosynthesis in plant and algal biomass generates oxygen while drawing down carbon dioxide and water from air that enacts:

- supply of feedstock and food to grow living communities of biomes, wildlife, livestock and people
- energy delivery for ecosystem growth of viable genetic, habitat and species biodiversity ranges
- braking on greenhouse gas forces accelerating anthropogenic climate change as well as
- oxygen release that buffers against anthropogenic depletion of stratospheric ozone layer.

Together these all increase wellness. Positive benefit, gain and circularity results for each damage outcome range from levels being:

- improved that avoids 1 to 99% loss.
- net-zero gain that avoids 100% loss.
- net-benefit that regains ≥100% loss.
- regenerative that regains ≥200% loss.

In this declaration the

- product supply chain and reports confirm a range of inherently positive outcomes /kg.
- functional unit is a kilogram of the product used over 20 years and reuse beyond cradle to grave.

The results in the next sections illustrate if, how and why nature positive wellness, ecosystem and supply benefits arise from reliance on renewable energy and circularity of all types of fossil and biomass feedstock resources.

Nature Positive LCBA, UNSDG and Circularity Results

The sheep wool product LCBA, land use and % circularity results across the Nature Positive LCBA framework that covers UN SDGs are tabled below. Some 75% are LCBA results, 25% with asterisk are land use area results beyond the system boundary. Overall 11 show improvements, 1 net-zero gain, 3 net-benefits and 10 regenerative outcomes. Of 32 results, 14 exceed full circularity and 7 < 20% circular.

Benefit Layer	Exposure & Jurisdiction	Unit	Circularity	SDG
Healthy Able Life	/ears (HALY)	HALY/kg	% Capacity	lcon
Local Shelter	Household shelter	m ² GFA	100% Ruminant Housing	1 1
Fresh Food	Affordably nourished	kJ	413% Nutrition	2 (((
Clean Air	PM _{2.5} dust-free	µg PM _{10+2.5}	113% Decongestion	
Sweet Air	VOC free outdoors	µg VOC	142% Less Cancer	<u>3</u> ///
Fresh Air	Oxygen indoors	kg O ₂	236% Oxygenation	4
Time in Nature	100 days recreation pppa	R&R Ha	0.3% days R&R space*	5€
Fresh Water	Potable rain hydrated	l rain	97% Potabability*	6
Sun Safety	Ozone layer repair	kg O _{2 outdoors}	336% Ozonating	7-26
Supply Energy & F	Resource Viability (SERV)	SERV/kg	% Capacity	
Viable Supply	Refuel local reserves	MJ _{ncv}	65% Autonomy	8
Viable Shelter	Refuges in disasters	MJ _{ncv}	67% Safe havens*	9
Viable Mineral	Recycle scarce material	MJ ncv	0.4% Mineral security	
Viable Food	Reliance on local food	kJ ncv	413% Food autonomy	¹⁰ ∢Ê
Viable Air	Photosynthetic Cities	kg O _{2e100}	236% Oxygenation	11
Viable C-bank	Resink Carbon in product	kg CO _{2e100}	325% Bank-carbon	mus
Viable Disaster	Reserved sustenance	MJ ncv	370% Recoverability	12
Viable Feedstock	Recycle material & scrap	MJ _{ncv}	370% Recyclability	
Viable Energy	Reliance on renewable	MJ _{ncv}	125% Renewability	13
Positive Ecosyste	m ReFormation (PERF)	PERF/kg	% Capacity	
Viable Water	Refill local reservoirs	Iwater	6% Freshwater*	14==
Aquatic Stock	Species rich range	kg frog stock	0.2% Aquatic bounty*	
Plants & Algae	Carbon drawdown	kg CO _{2e100}	413% Climate security	
Wildlife Habitat	Corridor & refuge range	MJ biomes	20% Linked Ranges*	15
Terrestrial Stock	Species rich refugia	kg Terrastock	20% Wildlife rich*22	
Arial Stock	Species rich refugia	kg Avistock	50% Abundance	16
Pollinator stock	Species rich range	kg Beestock	50% Biodiversity*	
Climate Brakes	Carbon drawdown	kg CO _{2e20}	413% Climate safety	17
Carbon banking	Soil Carbon	kg CO _{2e100}	0.02% Soil-Carbon	g
		1	1	

²² Relic ancient biodiversity refuge on farm site

Global GreenTag^{Cert™} EPD Program Environmental Product Declaration ISO 14025, EN15804+A2 2019 Compliant Autex Acoustics® Embrace Wool Felt Panels

The results in this sections explain all the benefits from the previous table listing Nature Positive LCBA, UNSDG and Circularity Results. All such results are shown in detail in the following pages.

Healthy Able Life Years (HALY) % capacity includes:

- 0.3% R&R recreation time in nature at hill climb bike races and dog trials.
- 97% fresh potable rainwater hydrated and potabability reliant on town and rain water
- 100% local shelter for shepherds, sheep and sheep dogs on marginal uplands
- 113% clean air decongested being PM_{2.5} dust-free
- 142% sweet air with less cancer risk being VOC-free outdoors
- 236% fresh air via oxygenation to indoors
- 336% sun safety from oxygen from photosythesis for biosphere refill and ozone layer repair
- 413% fresh affordable nutrition for sheep and dogs not displacing arable cropping land

Supply energy & resource viability (SERV) capacity includes:

- 0.4% mineral security from washery reclaimed potassium
- 65% autonomy viable supply refuel local reserves
- 67% shelter refuges in disasters
- 125% reliance on renewable energy
- 236% oxygenation air from photosythesis for cities
- 325% carbon bank via resinking carbon in product
- 370% feedstock recyclability of material and scrap
- 370% disaster recoverability via sustenance from fodder reserves plus
- 413% local food autonomy reliance for sheep grazing marginal hill country.

Positive ecosystem reformation (PERF) capacity includes:

- 0.02% carbon banking in marginal land soil across hill country
- 0.2% aquatic stock with aquatic species rich range
- 6% freshwater refill of local reservoirs
- 20% linked corridor & refuge range with wildlife habitat
- 20% wildlife stock and species rich terrestrial refugia
- 50% arial stock abundance with species rich refugia
- 50% pollinator stock biodiversity with species rich range
- 413% climate safety braking climate force and carbon drawdown by plants and algae.

The next sections define cradle to cradle outcomes results under sub headings

- Unsustainable Losses showing no effect
- Net-zero avoiding loss or slightly improved gain
- Improved avoiding all loss.
- Nature Positive net-benefit compensating for more than the loss.
- Regenerative Outcomes compensation for all loss plus replacing it.

Unsustainable Losses Cradle to Cradle

Table 6a lists supply parameters and unaffected result showing no real gain or benefit.

Table 6a Unchanged Sheep wool 20year Outcomes/Functional Unit

Damage measure	Result	Unit	Damage measure	Result	Unit
Induced Climate Cha	nge	1	I		1
Fossil fuel emissions	3.03	kg CO _{2e 100} yr			
Human Health Deplet	ion				
Ionizing Radiation	2.7E-17	kBq U _{235e}	Carcinogens	5.0E-09	CTUe
Stratos Ozone Loss	3.6E-09	kg CFC _{-11e}	Ecotox Human Health	2.0E-07	DALY
Photochemical Smog	1.6E-02	kg NMVOC	Radioactive Waste	2.7E-17	kg
Ecosystem Depletion	1				
Ecotoxins	7.9E-03	PDFm ² yr	EP Marine	9.2E-87	kg N _{eq}
EP Freshwater	5.2E-05	kg P _{eq}	EP Terrestrial	9.2E-87	mol N _{eq}
Resource Depletion					
Freshwater use	6.1E-02	m ³	1ry Renewable Energy	7.9	MJ _{ncv}
Total Resource Loss	3.0E-04	MJ _{surplus}	2ry Renewable Fuel	2.6E-02	MJ _{ncv}
Fossil Fuel Depletion	1.76	MJ _{surplus}	2ry Fossil Fuel	7.6E-02	MJ _{ncv}
Primary Fossil	00		1ry Fossil Feedstock	6.8	MJ _{ncv}
Energy	23	MJ _{ncv}	1ry Total Fossil Energy	30	MJ _{ncv}

Near Net Zero Gain Outcomes Cradle to Cradle

This section describes near net zero slightly improved wellness, ecosystem and supply outcomes from including flows that form embodied protein versus ignoring them in durable products.

Table 6b lists slightly better wellness with 7% less ecotoxicity and from cleaner air outdoors meaning inhaling of 8% less ethylene equivalent photochemical summer smog. It also lists near slightly better supply with 2% more energy reuse and 4% less mineral and metal loss.

Table 6b Near Net Zero Wellness Outcomes/Functional Unit

Damage	Unit	Result	Δ	Damage	Unit	Result	Δ
Wellness Outcomes							
Ecotox H Health	HALY	1.8E-07	107%	Summer Smog	kg C ₂ H ₂	2.5E-03	108%
Supply Outcomes							
Energy for Reuse	MJ	35	102%	Mineral & Metal	kg S _{eq}	5.2E-04	104%

Improved Outcomes Cradle to Cradle

This section describes reducing then replacing significantly more than 100% of loss to show improved wellness, ecosystem and supply outcomes from including flows that form embodied protein.

Table 6c lists improved wellness security from lower premature death and disability lost from

- 113% fewer parts per million (ppm) of ultra fine (2.5 μ m to <10 μ m) particulates in air
- 142% less cancer toxicity mostly from inhaling 142% less respirable synthetic organic chemicals in cleaner outdoor air.
- 190% less non-cancer toxicity mostly from synthetic inorganic chemicals

It also lists contributions to improved supply security from

- 12% more total energy embodied potentially available for reuse and recycling at end of life
- 21% more total primary renewable energy & 25% total primary renewable feedstock counted
- 96% less general waste to landfill from reuse and recycling at end of life

Furthermore it shows net-gains in ecosystem security and 179% more natural and marginal land use without arable land use for crops, natural land use changed for mining or hazardous landfill operations.

Table 6c Benefit Outcomes/Functional Unit

Measures	Unit	Result	Δ	Measures	Unit	Result	Δ
Wellness Improvements							
Particulates 2.5 _{ppm}	DALY	1.4E-10	113%	Cancer toxicity ex	CTUh	5.6E-09	142%
Non-cancer toxicity	CTUh	9.2E-08	190%	respirable organics			
Supply Improvements							
Total Embodied Energy	MJ _{ncv}	82	112%	Feedstock Renewal	MJ	45	125%
Total 1ry Energy Renewal	MJ _{ncv}	53	121%	General Waste	kg	0.05	196%
Ecosystem Improvements							
GWP Land use & change	kg CO ₂₆	-1.51	112%	Natural land use	points	0.19	179%

Nature Positive Outcomes Cradle to Cradle

Beyond replacing 100% of loss achieves zero net gain while avoiding over 200% loss achieves nature positive outcomes as described in this section. Table 6d shows wellness security net-gains including from avoided human death and disability from 200% fewer ultra fine ($2.5 \mu m$ to <10 μm) particulates and 200% less lost human health life years. It also lists ecosystem net-gains from 200% less disappeared ecosystem fraction and 200% less damage and loss overall in EcoIndicator 99 Points.

Table 6d. Net Gains/	g Funct	ional Unit					
Measures	Unit	Result	Δ	Measures	Unit	Result	Δ
Wellness Benefits							
Human Health El99	DALY	0	200%	Respirable Inorganics El99	DALY	0	200%
Ecosystem Benefit							
Ecosystem Quality El99	PDFm ^{2;} yr	0.00	200%	EcoIndicator 99	points	0.00	200%

Regenerative Outcomes Cradle to Cradle

This section describes gains that account for all loss replacement, and more than doubling that amount to redeem ecosystem and climate pre-industrial capacity and regenerate wellness and supply security. Table 6e lists amounts regenerative climate outcomes /functional unit. Regenerative climate outcomes arise from avoiding 325% more global warming via:

- biogenic drawdown via photosynthesis by leaf, algae, roots and soil into durable biomass
- drawdown via chemosythesis by rumen microbes into protein to grow wool fibre (97% protein)
- as well as carbon banks in soil and product biomass over the longer 100 year term.
- Regenerative wellness benefits arise from net- gains in 325% more photosynthetically produced oxygen for all humans as well as livestock and wildlife and indeed all living things to breathe. Factoring in embodied protein accounts for growing ecosystem regeneration benefits from:
- upland marginal land security from retained biota, seed, fibre and soil biomass with grazing,
- leaf, algae photosynthetic sequestration in biomass for drawdown into fodder for herds and
- rumen and soil aerobic and anaerobic microbiota chemosynthetic drawdown into wool biomass

Embrace wool insulation product accrues regenerative ecosystem benefits including:

- greater biodiversity this decade from 413% more biogenic CO_{2 eq 20 yrs} drawdown from the air
- pH balance from 949% less acidification of air land and waters in the longer term.

Ecosystem Quality gains arise from 949% less acidification to air land and water. Supply regeneration includes 370% more matter & energy circularity from reliance on total primary renewable energy, primary biomass and material for energy recovery.

Table 6e Regeneration/kg Functional Unit

Measures	Unit	Result	Δ	PEF%				
Climate Regeneration	Climate Regeneration							
Far Term Climate Braking	kg CO _{2 eq 100 yrs}	-5.88	325%	8.07				
Wellness Regeneration								
Oxygenated Global Airshed	kg O _{2 eq 100 yrs}	-4.28	236%	8.07				
Ecosystem Regeneration								
Biodiversity Biogenic Drawdown	kg CO _{2 eq 20 yrs}	-7.20	413%	10.26				
Acidification pH Balance	mol H⁺ eq.	6.8E-02	949%	23.54				
Supply Regeneration								
Circularity of matter & energy	MJ share	63	370%	9.18				

Qualitative Summary across LCBA framework indicators

Many results not quantified for this study can instead for quantified under different carbon offset, forestry, biodiversity or water or soil conservation schemas. Additional outcomes listed in this section cover completeness, gaps or factors beyond the LCA system boundary that could be counted in future EPDs.

Healthy Able Life Years (HALY) Inset and Set Apart Qualities

Local Shelter	Forests, trees and scrub offer shelter across Otairi station as previously noted
	Avian, insect and sub grade soil biota shelter across Otairi station
	67% of agricultural land can grow ruminant milk and meat but not plant crops
Fresh Food	Floral feedstock for birds and bees is most evident across Otairi grazing fields
	Sheep manure building stronger wetter, deeper soils and bugs.
Fresh Air	Plants & Algae ensure clean air across the hill country
Time in Nature	Local town, farm and school community recreation events
	Agricultural produce industry employs a third of all workers worldwide
Work Dignity	Forested land is inset and some set apart for timber industry workings
	Bee hives set apart employ apiarists as well and health industry workers
Medical Access	Bee hives in separate Manuka fields and foraging in pasture making honey
	Wool grease coproducts are used in pharmaceuticals and healthcare
Fresh Water	Potable water rain catchment across pasture and forest not counted in LCI

Supply Energy 8	Resource Viability (SERV) Inset and Set Apart Qualities
Viable Water	Refill local reservoirs from pastural rain catchment not counted in LCI
Viable Air	Photosynthetic oxygen buffers clean air supply blown to cities near and far
Viable C-bank	Wool fleece weather-calming force is 8 to 25 times bigger than its weight.
Viable Energy	Wool growth is on renewable photosythetic and chemosynthesic energy
Viable Food	Sheep food is reliant on forage and rumen feedstock across marginal land
Viable Supply	Sheep flock supplier is from across marginal land unfit for plant crops
Viable Mineral	HawkesBay WoolWorks Washery extracts fleece potassium for fertiliser
Viable	HawkesBay WoolWorks Washery extracts fleece Suint for fertiliser
Feedstock	HawkesBay WoolWorks Washery extracts grease for health care products
Viable Disaster	HawkesBay WoolWorks was been rebuilt with kit above foreseen flood levels
Viable Shelter	Otairi Station offers disaster-refuge for many avairian and freshwater species

Positive Ecosystem ReFormation (PERF) Inset and Set Apart Qualities

Natural Access	Forested valleys and ridged corridors connecting natural habitats.
Urban Bounty	Wool insulation in buildings can lock-up bad weather forces for 100 years
Soil Carbon	Carbon is banked across Otairi soil bar in few rock, road, track and roof areas.
Climate Brakes	Wool blankets, doonas and carpet brakes bad weather force for 20 years
Plants & Algae	Carbon drawdown across Otairi station scrub, grass & woodland as previously noted
Aquatic Stock	Otairi Station rivers are stocked with freshwater species as previously noted
Wildlife Habitat	Forested valleys and ridges connect natural habitat, refugia and extended range
Terrestrial	Rich flora & fauna range Wildlife Habitat original set apart for heritage & study
Avian Stock	Species rich range refugia for many bird, insect species across Otairi station
Pollinator stock	Species richness & range pollinator stock is most evident across Otairi grazing fields
Nature Reserve	Scarce reserves have been retained and restocked for heritage & study

Interpretation of LCBA

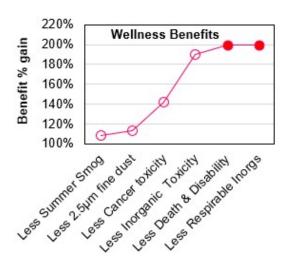
This section interprets the Life Cycle benefit results ranging from improvement, net-gain to regenerative results /kg functional unit cradle to cradle

Unlike linear primary and fossil fuelled operations, inherent benefits arise from reliance on renewable, recycled, reused and or recyclable component circularity in supply.

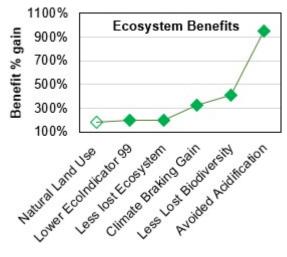
Figures 6,7 and 8 chart net gain, nature positive and regenerative ecosystem, wellness and supply security.

Together these Embrace product benefits offset 80% of the ecofootprint per capita global citizen/kg product use for 20 years.

Wellness offset 17 PEF points from:


- 107% less human ecotoxity
- 108% less photochemical smog
- 113% less 2.5µm particulates
- 142% less respirable organics
- 142% less cancer toxicity
- 190% less non-cancer toxicity
- 200% less respirable inorganics
- 200% less human health loss

Ecosystem offset 46 PEF points from:


- 200% avoided loss of Ecosystem Quality EI99
- 200% avoided loss in EcoIndicator 99
- 949% avoided acidification loss of pH balance
- 413% avoided biodiversity loss
- 179% avoided natural land use change
- 325% stronger climate brake force to 100 years
- •

Supply offset 17 PEF points from:

- 104% avoided mineral and metal depletion
- 196% avoided general waste
- 102% more energy reuse
- 112% more total embodied energy
- 121% more total 1ry renewable energy
- 125% more feedstock renewal
- 370% more matter and energy circularity

Figure 5 Wellness Security/kg F unit

Figure 6 Ecosytem Security/kg F unit

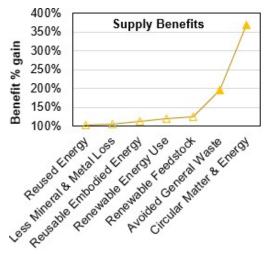


Figure 6 Supply Security/kg F unit

References Addendum

- [21] A Global Goal for Nature, Nature Positive by 2030, About Nature+Positive 2021 https://www.naturepositive.org/
- [22] The Partnerships for SDGs online platform. Net Positive in Water & Carbon by 2040. 2022: https://sustainabledevelopment.un.org/partnership/?p=32625
- [23] Locke, H., Rockström, J., Bakker, P., Bapna, M., Gough, M., Lambertini, M., Morris, J., Polman, P., & Carlos, M. Nature Positive 2021 The Global Goal for Nature. 2021; pp. 1–21. https://www.nature.org/content/dam/tnc/nature/en/documents/NaturePositiveGlobalGoal.pdf 2022.
- [24] Stockholm resilience centre., Planetary boundaries 2022, <u>https://www.stockholmresilience.org/research/planetary-boundaries.html</u>
- [25] Cole, R. J. 2015 Net-zero & net-positive design. Build. Res. Inf., 431, pp. 1–6. DOI: 10.1080/09613218.2015.961046
- [26] Croes, P.R. & W.J. Vermeulen 2021 The assessment of positive impacts in LCA of products. Int J Life Cycle Assess 261: p. 143-156. DOI 10.1007/s11367-020-01820-x
- [27] Vlieg, M., Moazzem, S., Naiker, D., Jones, D. G., 2022. "Quantifying Nature Positive." DOI: 10.20944/preprints 202201.0012.v3
- [28] Jones, D, Vlieg, M., Ashar S., Friend, L. & Costa, Gomez C., 2022. "Learning to Quantify Positive Futures." International Journal of Environmental Impacts: 1-18. <u>DOI 10.2495/EI-V5-N2-128-145</u> WIT Trans. Ecol. Environ 2022, https://www.witpress.com/journals/ei
- [29] Vlieg M, Jones D. G. Benefit assessment in LCA, Procs FSLCI LCIC 2020 Conf, Berlin, Session 16. <u>https://www.researchgate.net/publication/359865895</u>
- [30] Jones, D. G., Ashar, S., Vlieg, M. A. M., & Baggs, D. M. 2020. Counting Gains to Beyond Zero Impact Futures, WIT Trans. Ecol. Environ 2020; 245, pp. 97-108. DOI 10.2495/EID200101
- [31] Vlieg M, Jones D. G. Benefit assessment in LCA, Procs FSLCI LCIC 2020 Conf, Berlin, Session 16. <u>https://www.researchgate.net/publication/359865895</u>
- [32] Jones, D. G., Vlieg, A. M., Ashar, S. & Baggs, D. Positive LCA Factoring Planetary Boundaries. Procs 27th SETAC Conf, Brussels, Belgium, pp. 23–32, 2017: <u>https://www.researchgate.net/publication/339815429</u>
- [33] Baggs D. M, Jones D., Vlieg M. Ashar S. Driving Beyond LCA Metrics for Net Positive Cities. Procs SETAC Conf Brussels, Belgium, pp. 167–168. 2017
- [34] Jones. D., Vlieg, M., Baggs. D.M., Biaz. O. & Bortsie-Aryee. N., Novel Wood LCA & EPDs Procs Conf, pp. 255–256. Helsinki, Finland, 2019. <u>https://www.researchgate.net/publication/339815300</u>
- [35] Vlieg M. A. M., Jones D. G. & Ashar S. Forest Product LCA: Carbon Form, Fire, Fuel & Fate Rules. Procs SETAC 2017, pp52, Brussels, Belgium, <u>https://www.researchgate.net/publication/339815272</u>

Normative References for this LCA & EPD

EN ISO 14040:2006, Environmental management - LCA - Principles and framework (ISO14040:2006)

EN 15643-1:2010, Sustainability of construction works - Sustainability assessment of buildings - Part 1: General framework

EN 15643-2, Sustainability of construction works - Assessment of buildings - Part 2: Framework for the assessment of environmental performance

EN 16449, Wood and wood-based products - Calculation of the biogenic carbon content of wood and conversion to carbon dioxide

ISO 9001:2008 Quality Management Systems Requirements

ISO 14001:2004 Environmental management systems: Requirements with guidance for use

ISO 14004:2004 EMS: General guidelines on principles, systems & support techniques

ISO 14015:2001 EMS: Environmental assessment of sites & organizations (EASO)

ISO 14025:2010 Environmental labels and declarations Type III environmental declarations - Principles and procedures

ISO 14031:1999 EM: Environmental performance evaluation: Guidelines

ISO14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

ISO 14064:2006 EM: Greenhouse Gases: Organisation & Project reporting, Validation & verification

ISO 15392:2008 Sustainability in building construction General principles

ISO 15686-1:2011 Buildings & constructed assets Service life planning Part 1: General principles

ISO 15686-2:2012 Buildings and constructed assets - Service life planning - Part 2: Service life prediction ISO 15686-8:2008 Buildings and constructed assets - Service-life planning - Part 8: Reference service life and service-life estimation

ISO 21929-1:2011 Sustainability in building construction Sustainability indicators Part 1: Framework ISO 21930:2007 Building construction: Sustainability, Environmental declaration of building products ISO/TS 21931-1:2010 Sustainability in building construction -Framework for methods of assessment of the environmental performance of construction works - Part 1: Buildings

ISO 21932:2013 Sustainability in buildings and civil engineering works -- A review of terminology

Bibliography

Australian & New Zealand <u>Guidelines For Fresh & Marine Water Quality (2000)</u> http://www.environment.gov.au/water/quality/national-water-quality-management-strategy

Basel Convention (2011) Control of Transboundary Movement of Hazardous Waste & Disposal http://www.basel.int/portals/4/basel%20convention/docs/text/baselconventiontext-e.pdf

International Energy Agency (2024) Energy Statistics http://www.iea.org/countries/membercountries/

Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative

Ecolnvent (2024) LCI Model 3.9.1 database http://www.ecoinvent.ch/ Ecolnvent, Switzerland

Evah (2024) LCA Tools, Databases & Methodology at http://www.evah.institute/

Franklin Associates (2024) US LCI http://www.fal.com/index.html Eastern Research Group USA

GreenTag™ Certification (2024) https://www.globalgreentag.com/about.html

IBISWorld (2024) Market Research, http://www.ibisworld.com.au/ IBISWorld Australia

Plastics Europe (2024) Portal <u>http://www.plasticseurope.org/plastics-sustainability/eco-profiles.aspx</u>

Pre (2024) SimaPro 8 Software, The Netherlands http://www.pre-sustainability.com/simapro-manuals

UNEP (2016) Persistent Organic Pollutants http://www.chem.unep.ch/pops/ The UN

USLCI (2024) Life-Cycle Inventory Database https://www.lcacommons.gov/nrel/search, USA

U. S. Geological Survey National Minerals (2024) http://minerals.usgs.gov/minerals/pubs/country/ USA

U. S. EPA (2016) Database of Sources of Environmental Releases of Dioxin like Compounds in U.S <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=20797</u> p 1-38, 6-9, USA.

Global GreenTag^{Cert™} EPD Program Environmental Product Declaration ISO 14025, EN15804+A2 2019 Compliant Autex Acoustics® Embrace Wool Felt Panels

Further and explanatory information is found at

http://www.globalgreentag.com/ or contact: certification1@globalgreentag.com

Global GreenTag^{Cert™} EPD Program Environmental Product Declaration Compliant to ISO 14025

© copyright of this EPD remains the property of the Global GreenTag International Pty Ltd