

Global GreenTagEPD Program: Compliant to EN15804+A2 2019

Armstrong Flooring Pty Ltd Non-coated slip retardant flooring sheet Accolade Safe and Infinity Safe 29-39 Mills Road, Braeside Victoria 3195

ArmstrongFlooring[®]

ArmstrongFlooring[®]

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Mandatory Disclosures

EPD type	to C4 + D
EPD Number	ATX AS02 2022EP
Issue Date	Day 17 th May 2022
Valid Until	Day 17 th May 2027

valid Until	- i,, - i - i - i - i - i - i - i - i - i -
Demonstration o	f Verification
PCR	Standard EN 15804+A2 2019 serves as core Product Category Rules (PCR) [1]. Sub PCR FC:2019v1 Floor Coverings also applies.
	LCA and EPD by Delwyn Jones, Director Ecquate Pty Ltd
☑ Internal	LCA Reviewed by Direshni Naiker Evah Associate
	EPD Reviewed by David Baggs, Global GreenTag Pty Ltd
☑ External	Third Party Verifier ^a Mathilde Vlieg, MalaikaLCT
External	a. Independent external verification of the declaration and data, mandatory for business-to-consumer communication according to ISO 14025:2010 [2].
Communication	This EPD discloses potential environmental outcomes compliant with EN 15804 for business-to-business communication.
Comparability	Construction product EPDs may not be comparable if not EN15804 compliant. Different program EPDs may not be comparable. Comparability is further dependent on the product category rules and data source used.
Reliability	LCIA results are relative expressions that do not predict impacts on category endpoints, exceeding of thresholds, safety margins or risks.
Owner	This EPD is the property of the declared manufacturer.
Explanations	Further explanatory information is available at info@globalgreentag.com or by contacting certification1@globalgreentag.com [3].

EPD Program Operator	LCA and EPD Producer	Declaration Owner
Global GreenTag Pty Ltd	Ecquate Pty Ltd	Armstrong Flooring Pty Ltd
PO Box 311 Cannon Hill	PO Box 123 Thirroul	29-39 Mills Road, Braeside
QLD 4170 Australia	NSW 2515 Australia	Victoria 3195
Phone: +61 (0)7 33 999 686	Phone: +61 (0)7 5545 0998	Phone: +61 (0)3 9586 5500
http://www.globalgreentag.com	http://www.evah.com.au	https://www.armstrongflooring.com

ArmstrongFlooring

ArmstrongFlooring[®]

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Program Description

EPD type	Cra	Cradle to grave A1 to C4 + D as defined by EN 15804 [1]																	
System boundary		The system boundary with nature includes material and energy acquisition, processing, manufacture, transport, installation, use and waste arising to end of																	
Information Modules					all m												zero re	esults	
Information					Buildi	ing L	_ife(Cycl	e As	sses	sme	nt					Supp	leme	ntary
Modelling	Δ	ctua	al					,	Scei	nario	os						Р	otenti	al
Stages	Pı	rodu	ct	Cons	struct		F	Buil abrid		g us	e Opera			d-of	-Life	Э	Benefit & load beyond system		
Modules	A1	A 2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	5	C5	\mathbb{S}	42	7	D2	D3
Mandatory (M) & Optional (O) Unit Operations Cradle to	Zesources ,	Transport	Manufacture	Transport	Construct	Use	Maintain	Repair	Replace	Refurbish	Energy use	Water use		Transport	/aste	Disposal	Reuse	Recovery	Recycling
Gate+ Options (O)				0	ŏ	0	ō	Ö	Ö	Ö	Ö	Ó	0	0	Ö	0	Ö	Ö	Ö
Grave	IVIa	ındat	ory	М	M	М	М	М	M	М	М	М	M	М	М	М	М	М	0
Scope Depiction		Figure 1 EPD Life Cycle Modules Cradle to Grave																	
Stages included	A1-:	.1-3 A4-5, B1-5, C1-4 & D1. Stages B6-7 and D2-3 have zero input & output flows																	
Stages excluded	No s	stag	e wa	as ex	clude	d bu	t B6	6-7 a	ınd l	D2-3	3 hav	e ze	ro f	low	s wi	th ze	ero res	ults	

Data Sources and Quality

Primary Data	Data was collected from primary sources 2019 to 2022 including the manufacturer, suppliers and their publications on standards, locations, logistics, technology, market share, management system in accordance with EN ISO 14044:2006, 4.3.2, [6]. All are biochemical and physical allocated none are economically allocated.						
Variability Range	Significant differences o	Significant differences of average LCIA results are declared.					
Data cut-off & quality criteria		Complies with EN 15804 [1]. The LCA used background data aged <10 years and quality parameters tabled below.					
Background	Data Quality Parameters and Uncertainty (U)						
Correlation	Metric σg	U ±0.01	U ±0.05	U ±0.10	U ±0.20		
Reliability	Reporting	Site Audit	Expert Verify	Region	Sector		
	Sample	>66% trend	>25% trend	>10% batch	>5% batch		
Completion	Including	>50%	>25%	>10%	>5%		
Completion	Cut-off	0.01%w/w	0.05%w/w	0.1%w/w	0.5%w/w		
Tomporol	Data Age	<3 years	≤5 years	<7.5 years	<10 years		
Temporal	Duration	>3 years	<3 years	<2 years	1 year		
Technology	Typology	Actual	Comparable	In Class	Convention		
Geography	Focus	Process	Line	Plant	Corporate		
	Range	Continent	Nation	Plant	Line		
	Representation	Global	, Africa, Americ	ca, Europe, Pa	cific Rim		

ArmstrongFlooring

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Product Information

Range Names	Non-coated slip-retardant flooring sheet
Based Massac	Accolade® Safe
Brand Names	Infinity Safe
Manufacturer	Armstrong Flooring Ltd
Factory warranty	10 years
Manufacturer address	29-39 Mills Road, Braeside Victoria 3195
Site representation	29-39 Mills Road, Braeside Victoria 3195
Application	Uncoated slip-retardant floor covering sheet
Function in Building	Slip-retardant flooring via surface embossing reducing aquaplaning
Specifications	Mineral filled polyvinyl chloride resilient flooring
Declared unit	1 kg = 0.34483m ² of non-coated slip-retardant floor covering
Functional unit	20 years use of declared 2.9 kg/m² Armstrong flooring per kilogram
Design Application	Dry areas of Hospital, Aged Care, Health Care, Education, Hospitality, Mercantile and Light Industrial sector buildings.
Practices Reference	https://www.armstrongflooring.com/pdbupimages-flr/223752.pdf
Installation Procedure	https://www.armstrongflooring.com/pdbupimages-flr/223751.pdf
Practicality	Embossed surface offers safe grip. Excellent dent and gouge resistance. Colour chips mask dirt.
Durability	Grip without silicon carbide attracted and held dirt, increased maintenance and wear rates of cleaning equipment. Embossed surface and High visibility colour chips mask dirt and wear marks in high use areas

Product Functional & Technical Performance

This section provides manufacturer specifications, additional information and datapoints required to calculate assessment results factoring different mass and periods.

Service	Standards	Parameters	Conformance to standards
Туре		Resilient floor covering	Slip-retardant floor covering
Performance	ISO 10581	Slip-retardant floor covering	$\sqrt{}$
Binder Content		Туре	1
Use Area	ISO 10874	Commercial	34
Classification		Light industrial	43
Lifetime [5 & 6]	ISO 15686	Reference Service Life (RSL)	20 years RSL
	ISO 24340	Wear layer thickness	2.0mm
Dimensions	ISO 24341	Roll width*length	1.83*16m W*L
	ISO 24346	Overall thickness	2.0mm
Durability	EN 660-2	Wear resistance group	Р
	10 1500	A: Wet pendulum	P4
Slip resistance	AS 4586 Appendix	C: Wet barefoot	В
	пропак	D: Oil-wet	R10
Emissions	ASTM D5116	Volatile Organic Compound (VOC)	<0.5mg/m ² /hour
Reaction to fire	ISO 9239-1	Critical radiant flux	≥8kW/m²
Reaction to life	130 9239-1	Smoke development rate	≤750%.minutes
Fire resistance	AS 5637.1	Cone calorimeter	Group 3
rife resistance	AS/NZS 3837	Average specific extinction area	<250m ² /kg

ArmstrongFlooring*

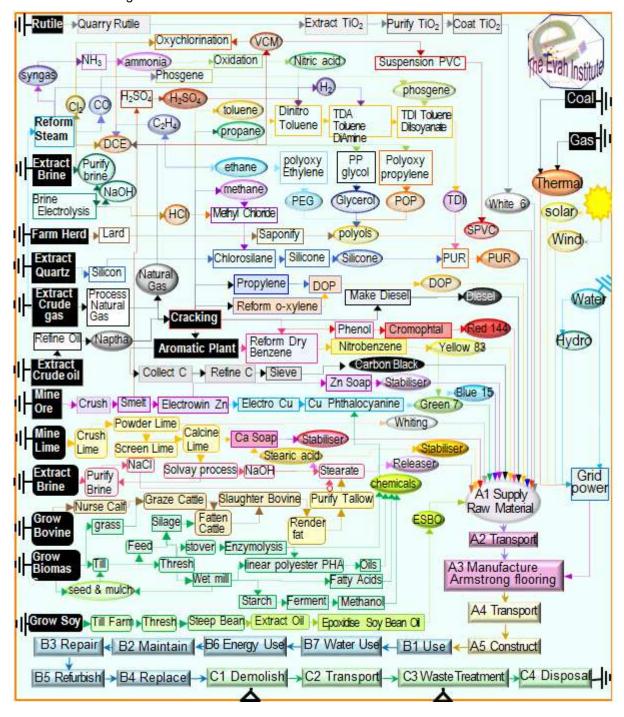
Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Product Composiiton

This section summarises factory components, functions, source nation and % mass share. In the product content listed below the % mass has a $\pm 5\%$ range and a confidence interval that is 90% certain to contain true population means at any time. This allows for intellectual property protection whilst ensuring fullest possible transparency. Listing such 90 $\pm 5\%$ certainty also considers normal resource acquisition, supply chain, sedimentation, seasonal, manufacturing and product colour variation over this EPD's 5-year validity period.

Base material content range (%w/w)

Function	Components	Cradle	Accolade Safe	Infinity Safe
Binder	Polyvinyl Chloride	Taiwan	>40<45	>40<45
Filler	Limestone	Australia	>39<44	>39<44
Plasticiser	Dioctyl Terephthalate	Mainland China	>10<15	>10<15
Stabiliser	Calcium Zinc soap	Australia	>1<3	>1<3
White pigment	Titanium dioxide	Mainland China	>1<2	>1<2
Stabiliser and plasticiser	Epoxidised Soybean Oil	Taiwan	>0.5<1	>0.5<1
Binder	Post Industrial Scrap PVC	Australia	>0.5<1	>0.5<1
Stabiliser	Diphenyloctyl Phosphite	Taiwan	<0.5	<0.5
Modifier	Polyurethane	Australia	<0.5	<0.5
Colour	Pigments	Global	<0.1	<0.1
Packing				
Carton & core	Cardboard 90% PCR	Australia	0.09	0.09
Wrap, spacer	Card & paper 90% PCR	Australia	0.83	0.83
Tape & liner	Polymer 55% PCR	Australia	0.05	0.05
Spools	Plastic	Australia	0.04	0.04
Tape & label	Paper	Australia	0.04	0.04
Completeness				
No Chemicals of Very High Concern	Product contains no substances i Candidate Lists of Substances of			"Authorised or
A1-A3 Stage Production Definitions	Operations include raw material a material reuse from prior syste extraction, refining & transport plu Also, transport to factory gates; r packaging, maintenance, replaced as well as fates of all flows at end	ms; electricity genus secondary fuel el manufacture of inpument plus flows lea	erated from all nergy and recov uts, ancillary ma	sources with ery processes. aterial, product,


ArmstrongFlooring

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

System Analysis Scope and Boundaries

Stages A1 to 3 model actual operations. Stage A4 to C4 are model scenarios. Typical scenarios are assumed to model forecast unit operations as described in the next section. Figure 2. shows included processes in a cradle to grave system boundary to end of life fates beyond the boundary to unshown:

- reuse,
- recycling or
- landfill grave.

Figure 2. Product Process Flow Chart

ArmstrongFlooring*

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Scenarios for Modules

This section defines modelling scenarios. Stages A1 to A3 model actual operations. Stage A4 to D3 model scenarios described as listed below.

A Construction

A4 Transport to Site	Type specified	Amount	Type specified	Amount
Intercity road trucking	2t to 5t vans	220 km	85% Capacity	Full back load
Long distance road trucking	25t semi-trailer	600 km	85% Capacity	Full back load
Continental freight rail	Diesel train	600 km	85% Capacity	Full back load
Global container shipping	Factory to CBD	1,200km	85% Capacity	Full back load
Volume capacity (<1 to ≥1)	Utilisation factor	1	Uncompressed	Un-nested
A5 Installation: Ancillaries	Adhesive	0.025 kg	Edge trim	0.0001 kg
Packing	Cardboard	0.005 kg	Polymer	0.00001 kg
Water & Energy	Town water	0.00 m3	Energy type	0.0 MJ
Waste on site	Trims	0.05 kg	All packaging	As declared kg
Scrap, collection & routes	No recycling	0.0 kg	Energy recovery	0.0 kg
Emissions	Nil to air & water	0.0 kg	All from landfill	In LCA report

B Building

Stage B1 Use of building fabric has zero flows. Stage B2 and B3 scenarios are listed below. Stages B4 Replacement, B5 Refurbishment, B6 Building Operating Energy and B7 Building Operating Water each have zero flows

B2 Maintenance	Type specified	Amount	Type specified	Amount
Maker's specified process	URL declared	Specified	Clean cycle	Weekly
Ancillary material (kg)	Scrubber pads	Negligible	Detergent	0.007kgpa
Washing net water use	Town water	1.95kgpa	To drain 1.90	kgpa
Vacuum cleaning energy	Once weekly	1.62MJpa	Power mix	Local AU mean
B3 Repair	Damaged parts	0.05kg	Worn parts	Same 5%
Maker's specified process	As per website	Specified	Freight to site	As A5
Energy input & source	No excess	0.0MJpa	Packaging	As A5

Stage C1, C2 and C4 scenarios are listed below. Stage C3 Waste Treatment has zero flows.

C End Of Life

C1 Demolition	Type specified	Amount	Type specified	Amount
Operation	Take up worn	0.40kg	Collection	Separate
Collection process	In site waste	0.40kg	Separate to reuse	0.0kg
C2 Transport	25t truck road	50km	85% capacity	No back load
C4 Disposal	Product specific	0.40kg	Collect separately	0.40kg
Typical Scenario	high wear to	40%	All emissions	mass share
Recovery system	No recycling	0.0 kg	Not for energy	0.0 kg

Stage D1 scenario is listed below. Stages D2 Recovery and D3 Recycling have zero flows.

D Beyond System Boundary

D1 Reuse	Type specified	Amount	Type specified	Amount
Typical Scenario	Retain low wear	60%	Reuse in place	0.60kg

ArmstrongFlooring

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Environmental Impact Terminology

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

Global warming forcing Climate Change

Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening "climate emergency".

Ozone layer depletion

Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons, hydrobromofluorocarbons, chlorobromomethane, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the "ozone hole" reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.

Acidification

Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of "*acid rain*" are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning <u>fossil fuels</u> polluting rain and snow precipitation world-wide.

Eutrophication of terrestrial, freshwater and marine life

Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of "*algal blooms*" is nitrogen (N, NOx, NH₄) and phosphorus (P, PO₄³⁻) in rain run-off over-fertilised land catchments.

Photochemical ozone creation

Tropospheric photochemical ozone, called "summer smog" near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.

Depletion of water, metals & minerals

Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement "extinction rebellion" calls on adults to secure climate, reserves and biodiversity for current and future generations.

Depletion of fossil fuel reserves

Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching "peak oil" acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.

ArmstrongFlooring[®]

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Glossary of Terms and Units

Impact Potentials, acronyms, methods and units are defined below.

Impact Potentials	Acronym	Description of Methods	Units
Climate Change total	GWP	Global Warming Potential [7]	
Climate Change fossil	GWP ff	GWP fossil fuels [7]	
Climate Change biogenic	GWP bio	GWP biogenic [7]	kg CO _{2eq} .
Climate Change land use	GWP luluc	GWP land use & change [7]	
Stratospheric Ozone Depletion	ODP	Stratospheric Ozone Loss [8]	kg CFC _{11eq}
Photochemical Ozone Creation	POCP	Summer Smog [9]	kg NMOC eq
Acidification Potential	AP	Accumulated Exceedance [10]	mol H ⁺ eq
Eutrophication Freshwater	EP fresh	Excess nutrients freshwater [11]	kg P _{eq}
Eutrophication Marine	EP marine	Excess marine nutrients	kg N _{eq}
Eutrophication Terrestrial	EP land	Excess Terrestrial nutrients	mol N eq
Mineral & Metal Depletion	ADP min	Abiotic Depletion minerals [12]	kg Sb eq
Fossil Fuel Depletion	ADP fossil	Abiotic Depletion fossil fuel [13]	MJ_{ncv}
Water Depletion	WDP	Water Deprivation Scarcity [14, 15]	$m^3 {\text{WDP eq}}$

Inventory inputs, acronyms, methods and units are defined below.

Input flows	Acronym	Description of Methods	Units
Fresh Water Net	FW	Lake, river, well & town water	m^3
Secondary Material	SM	Post-consumer recycled (PCR)	kg
Renewable Secondary Fuel	RSF	PCR biomass burnt	MJ_{ncv}
Primary Renewable Material	PERM	Biomass retained material	MJ_{ncv}
PER Excluding Feedstock	PERE	biomass fuels burnt	MJ_{ncv}
Primary Energy Renewable Total	PERT	Biomass burnt + retained	MJ_{ncv}
Unrenewable Secondary Fuel	NRSF	PCR fossil-fuels burnt	MJ_{ncv}
PE Finite Energy not Feedstock	PENRE	fossil-fuel used or burnt	MJ_{ncv}
PE Unrenewable Material	PENRM	Fossil feedstock retained	MJ_{ncv}
Primary Energy Unrenewable Total	PENRT	Fossil feedstock & fuel use	MJ_{ncv}

Outputs, acronyms, methods and units are defined below.

Inventory Output flows	Acronym	Description of Methods	Units
Hazardous Waste Disposed	HWD	Processed to contain hazard risks	kg
Non-hazardous Waste Disposed	NHWD	Municipal landfill facility waste	kg
Radioactive Waste Disposed	RWD	Mostly nuclear power station waste	kg
Components For Reuse	CRU	Production scrap for reuse as is	kg
Material For Recycling	MFR	Production scrap for remanufacture	kg
Material For Energy Recovery	MER	Production scrap for use as fuel	kg
Exported Energy Electrical	EEE	Common for buildings not products	MJ_{ncv}
Exported Energy Thermal	EET	Common for buildings not products	MJ_{ncv}

ArmstrongFlooring[®]

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

ArmstrongFlooring[®]

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Module A1 to C4 Impact Results Cradle to Grave

Table 1 shows results in declared units/functional unit across A1 to A5, B2, B3, C1, C2 and C4. All flows and hence results were zero in B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Building Operating Energy, B7 Building Operating Water and C3 Waste Treatment.

Table 1.0 A1 to C4 Impact Results/Functional Unit

Accolade Safe	A1-3 Acquire Transport & Manufacture	A4 Transport	A5 Construct	B2 Maintain	B3 Repair	C1 Demolish	C2 Transport	C4 Disposal
GWP biogenic	-4.5E-02	-1.1E-06	-0.012	-0.091	-4.0E-03	-2.1E-04	-8.8E-07	0
GWP luluc	4.7E-06	1.7E-09	6.0E-06	7.33E-06	4.21E-07	2.0E-08	1.4E-09	3.5E-03
GWP fossil	3.59	0.02	0.30	0.62	0.23	1.8E-03	6.1E-03	7.1E-03
GWP total	3.55	0.02	0.29	0.53	0.23	1.6E-03	6.1E-03	1.1E-02
Ozone loss ODP	9.6E-09	1.7E-13	1.2E-08	3.0E-09	5.9E-09	6.8E-12	1.1E-13	7.1E-08
Smog POCP	2.0E-02	1.2E-04	1.9E-03	3.3E-03	1.4E-03	9.6E-06	6.0E-05	6.1E-04
Acidification AP	9.4E-03	1.2E-05	8.3E-04	1.4E-03	6.5E-04	4.1E-06	5.1E-06	1.1E-03
EP freshwater	6.5E-07	5.6E-10	2.3E-05	5.9E-07	2.2E-05	1.4E-09	3.1E-10	3.1E-04
EP marine	1.8E-03	2.3E-06	1.7E-04	2.4E-04	1.3E-04	7.4E-07	9.5E-07	2.6E-05
EP terrestrial	1.5E-02	7.9E-06	1.1E-03	1.8E-03	9.9E-04	5.4E-06	3.4E-06	4.2E-05
ADP fossil	2.85	2.3E-02	0.26	0.53	0.19	1.5E-03	7.5E-03	0
ADP mineral	1.4E-04	7.2E-06	4.6E-05	2.9E-04	2.2E-05	6.6E-07	4.0E-06	0
WDP water	6.7E-03	3.0E-06	5.2E-03	9.8E-03	2.7E-03	2.3E-05	1.4E-06	0
Infinity Safe								
GWP biogenic	-4.5E-02	-1.1E-06	-0.012	-0.091	-4.0E-03	-2.1E-04	-8.8E-07	0
GWP luluc	4.7E-06	1.7E-09	6.0E-06	7.33E-06	4.21E-07	2.0E-08	1.4E-09	3.5E-03
GWP fossil	3.59	0.02	0.30	0.62	0.23	1.8E-03	6.1E-03	7.1E-03
GWP total	3.55	0.02	0.29	0.53	0.23	1.6E-03	6.1E-03	1.1E-02
Ozone loss ODP	9.6E-09	1.7E-13	1.2E-08	3.0E-09	5.9E-09	6.8E-12	1.1E-13	7.1E-08
Smog POCP	2.0E-02	1.2E-04	1.9E-03	3.3E-03	1.4E-03	9.6E-06	6.0E-05	6.1E-04
Acidification AP	9.4E-03	1.2E-05	8.3E-04	1.4E-03	6.5E-04	4.1E-06	5.1E-06	1.1E-03
EP freshwater	6.5E-07	5.6E-10	2.3E-05	5.9E-07	2.2E-05	1.4E-09	3.1E-10	3.1E-04
EP marine	1.8E-03	2.3E-06	1.7E-04	2.4E-04	1.3E-04	7.4E-07	9.5E-07	2.6E-05
EP terrestrial	1.5E-02	7.9E-06	1.1E-03	1.8E-03	9.9E-04	5.4E-06	3.4E-06	4.2E-05
ADP fossil	2.85	2.3E-02	0.26	0.53	0.19	1.5E-03	7.5E-03	0
ADP mineral	1.4E-04	7.2E-06	4.6E-05	2.9E-04	2.2E-05	6.6E-07	4.0E-06	0
WDP water	6.7E-03	3.0E-06	5.2E-03	9.8E-03	2.7E-03	2.3E-05	1.4E-06	0

ArmstrongSafetyEPD15804+A22019C2F@Evah17May2022v2.docx

Page 11 of 17

ArmstrongFlooring[®]

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

ArmstrongFlooring*

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Tables 2 show product LCI inputs/functional unit across stages A1 to A5, B2, B3, C1, C2 and C4. All flows and hence results were zero in stages: B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Building Operating Energy, B7 Building Operating Water and C3 Waste Treatment.

Table 2. A1 to C4 Inventory Results /Functional Unit

	Table 2. At to 64 inventory Results / unctional offic									
		Accolade Safe	A1-3 Acquire Transport & Manufacture	A4 Transport	A5 Construct	B2 Maintain	B3 Repair	C1 Demolish	C2 Transport	C4 Dispose
		Fresh Water Net	4.2E-02	1.8E-05	3.2E-02	6.1E-02	1.7E-02	1.4E-04	8.7E-06	0
		Secondary Material	1.2E-01	2.9E-06	0.025	0.044	0.014	4.1E-04	2.2E-06	0
		Secondary Fuel	9.4E-02	6.75E-06	0.011	0.20	0.006	4.71E-04	5.12E-06	0
	Renewable	Primary Energy not Material	1.02	3.0E-04	0.200	0.41	0.071	1.2E-03	2.0E-04	0
	Rene	Primary Feedstock	0.43	2.4E-03	0.034	1.00	0.027	2.3E-03	1.6E-03	0
		Primary Energy Total	1.45	2.7E-03	0.0234	1.41	0.098	3.5E-03	1.8E-03	0
	e	Secondary Fuel	0.18	7.4E-04	1.9E-04	0.039	3.0E-03	8.9E-05	4.8E-04	0
	Unrenewable	Primary Energy not Material	47.5	0.11	3.76	7.74	2.98	2.2E-02	6.4E-02	0
	nren	Primary Material	14.8	0.19	1.63	1.57	1.03	3.7E-03	3.7E-02	0
	ח	Primary Energy Total	62.3	0.30	5.38	9.31	4.01	2.6E-02	1.0E-01	0
I	Infinity Safe									
		Fresh Water Net	4.2E-02	1.8E-05	3.2E-02	6.1E-02	1.7E-02	1.4E-04	8.7E-06	0
		Secondary Material	1.2E-01	2.9E-06	0.025	0.044	0.014	4.1E-04	2.2E-06	0
		Secondary Fuel	9.4E-02	6.75E-06	0.011	0.20	0.006	4.71E-04	0	0
	able	Primary Energy not material	1.02	3.0E-04	0.200	0.41	0.071	1.2E-03	0	0
	Renewal	Primary Feedstock	0.43	2.4E-03	0.034	1.00	0.027	2.3E-03	0	0
	Rer	Primary Energy Total	1.45	2.7E-03	0.0234	1.41	0.098	3.5E-03	0	0
		Secondary Fuel	0.18	7.4E-04	1.9E-04	0.039	3.0E-03	8.9E-05	0	0
	Unrenewable	Primary Energy not Material	47.5	0.11	3.76	7.74	2.98	2.2E-02	0	0
	enew	Primary Material	14.8	0.19	1.63	1.57	1.03	3.7E-03	0	0
	Unr	Primary Energy Total	62.3	0.30	5.38	9.31	4.01	2.6E-02	0	0

ArmstrongFlooring*

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Tables 3.0 lists all other modules' product outputs in declared units/functional unit for stage A1 to A5, B2, B3, C1, C2 and C4. All results are zero for stages: B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Building Operating Energy, B7 Building Operating Water and C3 Waste Processing.

Table 3.0 Module A1 to C4 Output Results/Functional Unit

Table 5.0 Module AT to C4 Output Results/Functional Onit								
Accolade Safe	A1-3 Acquire Transport & Manufacture	A4 Transport	A5 Construction	B2 Maintain	B3 Repair	C1 Demolition	C2 Transport	C4 Disposal
Hazardous Waste Disposed	7.4E-03	3.7E-05	8.9E-04	9.1E-04	6.2E-04	2.1E-06	1.2E-05	0
Non-hazardous Waste Disposed	1.3E-01	3.1E-04	5.2E-02	9.9E-02	4.0E-02	2.3E-04	9.7E-05	4.0E-01
Radioactive Waste Disposed	1.2E-16	1.1E-31	4.5E-17	2.5E-17	2.3E-17	5.8E-20	8.5E-32	0
Components For Reuse	7.7E-03	4.4E-3	2.6E-04	1.7E-3	6.8E-3	3.8E-3	3.5E-3	0
Material For Recycling	5.4E-02	6.4E-06	3.2E-02	7.1E-02	3.4E-03	1.7E-04	4.6E-06	0
Material For Energy Recovery	7.1E-04	2.3E-07	2.7E-04	3.2E-05	1.2E-04	7.5E-08	1.5E-07	0
Exported Energy Electrical	0	0	0	0	0	0	0	0
Exported Energy Thermal	0	0	0	0	0	0	0	0
Infinity Safe								
Hazardous Waste Disposed	7.5E-03	3.7E-05	8.9E-04	9.1E-04	6.2E-04	2.1E-06	1.2E-05	0
Non-hazardous Waste Disposed	1.3E-01	3.1E-04	5.2E-02	9.9E-02	4.0E-02	2.3E-04	9.7E-05	4.0E-01
Radioactive Waste Disposed	1.2E-16	1.1E-31	4.5E-17	2.5E-17	2.3E-17	5.8E-20	8.5E-32	0
Components For Reuse	7.7E-03	4.4E-3	2.6E-04	1.7E-3	6.8E-3	3.8E-3	3.5E-3	0
Material For Recycling	5.4E-02	6.4E-06	3.2E-02	7.1E-02	3.4E-03	1.7E-04	4.6E-06	0
Material For Energy Recovery	7.1E-04	2.3E-07	2.7E-04	3.2E-05	1.2E-04	7.5E-08	1.5E-07	0
Exported Energy Electrical	0	0	0	0	0	0	0	0
Exported Energy Thermal	0	0	0	0	0	0	0	0

ArmstrongFlooring*

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

Module D Results Beyond System Boundaries

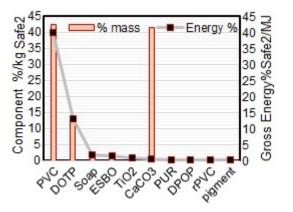
Table 4 shows Module D Beyond system boundaries D1 Reuse stage credits products results /functional unit as negatives as they reduce the impacts over the building life. All flows and results were zero for D1 Exported Energy Electrical (EEE) and Thermal (EET) as well as D2 Recovery and D3 Recycling.

Table 4 D1 Reuse Results /Functional Unit

Impact Potentials		Accolade Safe	Infinity Safe		
CI	mate Change GWP biogenic	-2.7E-02	-2.7E-02		
CI	mate Change GWP Iuluc	-2.8E-06	-2.8E-06		
CI	mate Change GWP fossil	-2.2E+00	-2.2E+00		
CI	mate Change GWP total	-2.1E+00	-2.1E+00		
Ozone Depletion Potential		-5.8E-09	-5.8E-09		
	otochemical Ozone Potential	-1.2E-02	-1.2E-02		
	idification Potential	-5.6E-03	-5.6E-03		
	trophication freshwater	-3.9E-07	-3.9E-07		
	trophication marine	-1.1E-03	-1.1E-03		
	trophication terrestrial	-9.1E-03	-9.1E-03		
	neral & Metal Depletion	-1.7E+00	-1.7E+00		
	ssil Fuel Depletion	-8.3E-05	-8.3E-05		
W	ater Depletion	-4.0E-03	-4.0E-03		
Inventory input flows					
	Fresh Water Net	-2.5E-02	-2.5E-02		
	Secondary Material	-7.0E-02	-7.0E-02		
<u>0</u>	Renewable Secondary Fuel	-0.06	-0.06		
Renewable	Primary Energy Feedstock	-0.26	-0.26		
ene	Primary Energy not Material	-0.61	-0.61		
~	Primary Energy Total	-0.87	-0.87		
<u>e</u>	Secondary Fuel	-0.11	-0.11		
wab	Primary Energy not Material	-28.5	-28.5		
Unrenewable	Primary Energy Feedstock	-8.9	-8.9		
- n	Primary Energy Total	-37.4	-37.4		
Inv	ventory output flows				
На	zardous Waste Disposed	-4.5E-03	-4.5E-03		
Non-hazardous Waste Disposed		-7.9E-02	-8.0E-02		
Radioactive Waste Disposed		-7.1E-17	-7.1E-17		
Co	emponents For Reuse	-4.6E-03	-3.1E-03		
Ma	terial For Recycling	-3.3E-02	-3.3E-02		
Ma	terial For Energy Recovery	-4.2E-04	-4.2E-04		

ArmstrongFlooring

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe


Interpretation

This section interprets overall results. Table 5 lists component mass % share versus Global Warming Potential (GWP kg CO_{2e}) and % share gross embodied energy (EE) results/kg products cradle to gate A1 to A3.

Figure 3 charts mass % results versus gross %EE share/kg A1 to A3. Results show highest sensitivity to PVC binder content and least sensitivity to limestone (CaCO₃) filler content.

Figure 4 charts GWP results versus Abiotic Depletion of Fossil Fuel/kg A1 to A3. Results show most GWP emissions from PVC binder, electricity usage and DOTP plasticiser.

Table 5 Component & EE% Vs GWP/kg Component Mass% EE% **GWP PVC** <45 39.9 1.11 DOTP <15 12.9 0.26 rPVC <1.0 0.20 0.09 0.07 Soap <3.0 1.91 **ESBO** 0.06 <1.0 1.48 TiO₂ < 2.0 0.93 0.04 pigment < 0.5 0.12 0.02 **PUR** < 0.5 0.30 0.01 **DPOP** < 0.5 0.27 0.01 CaCO₃ <45 0.00 0.66

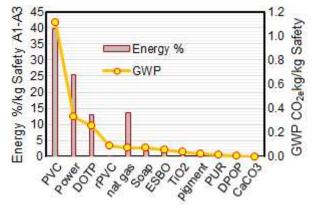
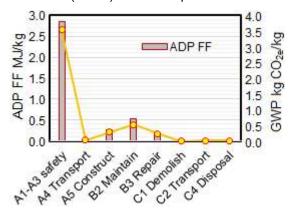



Figure 3 Component Vs EE % share//kg A1-A3

Figure 4 GWP Vs ADP FF/kg A1-A3

Figure 5 charts A1 to C4 GWP results versus ADP FF /kg product. Figure 6 charts A1 to C4 Photochemical Smog (POCP), Acidification (Ap), Marine Eutrophication (Ep M) and GWP results/kg product. Both charts show A1 to A3 product manufacture highest results and B2 maintenance (cleaning) second highest. A3 Construct (Install) and B3 Repair are third but other stages have no significance.

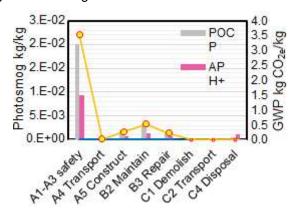


Figure 5 GWP Vs ADP FF /kg A1-C4

Figure 6 GWP, POCP, AP & EP M/kg A1-C4

Module D Beyond System Boundary results show typical D1 Reuse of 60% of least-worn product in low traffic bedroom, office and storage areas for 40 more years reduces all impacts >40%/kg for a 60-year building life with the same new product to 40% of the floor area in high traffic areas. Results for phases A4 to C4 are significant and these remain unchanged for replacement flooring over the building life.

ArmstrongFlooring

Non-coated slip retardant flooring sheet Accolade® Safe, Infinity Safe

References

- [1] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products.
- [2] GreenTag™ 2021 EPD Program, Product Category Rules https://www.globalgreentag.com/EPD.
- [3] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations Principles and procedures.
- [4] ISO14044:2006 Environmental management LCA Requirements and guidelines.
- [5] ISO 15686-2:2012 Buildings and constructed assets Service life planning Part 2: Service life prediction procedures.
- [6] ISO 15686-8:2008 Buildings and constructed assets Service-life planning Part 8: Reference service life and service-life estimation.
- [7] IPCC 2013, Global Warming Potential 100-year, IPCC Fifth Assessment Report Climate Change.
- [8] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014.
- [9] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H. & Van de meent, D. 2008, European characterization factors for human health damage of PM10 and ozone in LCIA, J O Atmos Environ 42(3):441-453, LOTOS-EUROS. DOI: 10.1016/j.atmosenv.2007.09.072
- [10] Seppälä, J., Posch, M., Johansson, M. & Hettelingh, J-P. 2006 Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, T Int J OF LCA 11(6):403-416 Nov 2006 DOI:10.1065/lca2005.06.215
- [11] Posch, M., Seppälä, J., Hettelingh, J-P. & Johansson, M. (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, Sept 2008, IJOLCA 13(6):477-486. DOI:10.1007/s11367-008-0025-9
- [12] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J. & Van Zelm, R. (2009). ReCiPe 2008 A LCIA method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1st Ed. EUTREND model.
- [13] CML–IA V4.1 LCA methodology, 2002, October 2012, Institute of Environmental Sciences (CML), University of Leiden, Netherlands.
- [14] Guinée et al. 2002, & van Oers et al. 2002 CML LCA methodology 2002a, U of Leiden, Netherlands.
- [15] Boulay, A-M., Bare, J., Benini, L., Berger, M., Lathuilliere, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A., Ridoutt, B., Oki, T., Worbe, S. & Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). I J of LCA. 23. 1-11. 10.1007/s11367-017-1333-8.

Bibliography

Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative

EN ISO 14024:2000, Environmental labels and declarations - Type I environmental labelling -Principles and procedures (ISO 14024:1999).

EN ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006).

EN 15643-1:2010, Sustainability of construction works - Sustainability assessment of buildings - Part 1: General framework.

EN 15643-2, Sustainability of construction works - Assessment of buildings - Part 2: Framework for the assessment of environmental performance.

EN 16449, Wood and wood-based products - Calculation of the biogenic carbon content of wood and conversion to carbon dioxide.

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products.

ISO 21931-1:2010, Sustainability in building construction - Framework for methods of assessment of the environmental performance of construction works - Part 1: Buildings.