

Global GreenTag^{Cen™} EPD Program

Compliant to EN 15804:2012+A2 2019

702 to 718 Rosebank Road, Avondale, Auckland, New Zealand

Global GreenTag^{Cert™} EPD Program

EN 15804+A2, ISO 14025, ISO 21930 Environmental Product Declaration

Acoustics[™] Wallcovering

EPD Information

EPD Verification	on and LCA Details		
EPD Scope	Cradle to Gate +Options		
EPD Number	ATX AF01 2022EP		
Issue Date	24 th January 2022		
Valid Until	24 th January 2027		

Demonstration of Verification

Standard EN 15804 serves as the core Product Category Rules (PCR) [1].

Independent external verification of the declaration and data, according to ISO 14025:2010

	Salting 2022	Third Party Verifier ^a Shloka Ashar Sustainability Consultant
✓ Internal	amm Meg 25 01 2022	LCA Reviewed by Mathilde Vlieg, VliegLCA
Internal	01/02/22	EPD Reviewed by David Baggs, Global GreenTag Pty Ltd

a: Optional for business-to-business communication; mandatory for business-to-consumer communication according to EN ISO 14025:2010, 9.4 [2].

The EPD is property of declared manufacturer. Different program EPDs may not be comparable as e.g., Australian transport is often more than elsewhere. Comparability is further dependent on the product category rules used and the source of the data. Further explanatory information can be found at www.globalgreentag.com or contact: <u>certification1@globalgreentag.com</u>.

This EPD discloses potential environmental outcomes compliant with EN 15804:2012+A2:2019 for business-to-business communication. Life Cycle Impact Assessment (LCIA) results are relative expressions that do not predict impacts on category endpoints, exceeding of thresholds, safety margins or risks.

EPD Program Operator [3]	LCA and EPD Producer	Declaration Owner
Global GreenTag Pty Ltd	The Evah Institute	Autex Industries Ltd
PO Box 311	Division of Ecquate Pty Ltd	702 Rosebank Road, Avondale,
Cannon Hill, QLD 4170	PO Box 123 Thirroul NSW	Auckland, New Zealand
Phone: +61 (0)7 33 999 686	Phone: +61 (0)7 5545 0998	Phone: +64 9 828 9179
http://www.globalgreentag.com	http://www.evah.com.au/	http://www.autexglobal.com

Global GreenTag^{Cert™} EPD Program

EN 15804+A2, ISO 14025, ISO 21930 Environmental Product Declaration

Acoustics[™] Wallcovering

Product Information

Froduct information									
Product Name	Autex Acoustics™ Wallcovering								
Product code	Symphony™; Composition® and Vertiface®								
Declared Unit	Declared product per	Declared product per kilogram [4, 5]							
Manufacturer warranty	10 years								
Manufacturing Site	702/718 Rosebank Ro	oad, Avondale,	Auckland, N	ew Zealand	b				
Site Representation and Geography	New Zealand, Austral	asia, Pacific Ri	im and the W	orld					
Cut-off criteria and Data quality	Complies with EN 158	804:2012+A2:2	019						
Standards	Sound absorption performance complies as determined using ISO 354 methodology. Reaction to fire performance complies with ISO 9705:1993, AS 5637.1:2015, BS EN 13501-1 and ASTM E84.								
Product Specifications	Symphony is thermally bonded high-density polyester (PET) wallcovering; Composition is thermally bonded needle-punched polyester wallcovering; and Vertiface is non-woven needle-punched polyester wallcovering fabric.								
	Product Name	Depth	Cover	Sound	Size				
	Unit	mm	g/m²	NRC ¹	m				
Functional & Technical Performance	Symphony™	10 to 12	1730	0.40	1.22*25				
Fenomance	Composition®	10 to 12	1680	0.40	1.22*25				
	Vertiface®	3 to 4	380	0.10	1.3x50				
Functional Performance in Building	Composition and reverberated noise at wallcovering, acoustic		erior spaces	. Vertiface	and control is used as a				
Range and variability	Significant differences of average LCIA results are declared. They were most sensitive to PET fibre melt-spin process energy reported ranging from (1.8 to 17.6)MJ/kg with a mean of 8.3MJ/kg and standard deviation of 8. As the LCIA variability based on such a mean is outside acceptable confidence limits, lower and upper median results from that range are declared.								
Primary Data	Data was collected in primary sources includ on standards location system and commitme	ding the manuf ns, logistics, te	acturer, supp chnology, m	liers and th arket share	neir publications e, management				
No Chemicals of Very High Concern	Contains no substa Substances of Very H Agency								

¹ NRC = Noise reduction coefficient conforming to ISO11654 standard methods

Acoustics[™] Wallcovering

Base Material Origin and Detail

Table 1 lists composition by component, function, source and percentage mass share.

•	, ,		· ·	0				
Table 1 Base Material Chemical Analysis								
Function	Componen	Source	Symphony	Composition	Vertiface			
Main fibre	95% rPET ²	Taiwan	>39 <47	>20 <24	>92 <100			
	80% rPET	Taiwan	>39 <46	>50<58	0			
Bond fibre	PETG ³	Korea	>19 <23	0	0			
	PETG	Taiwan	>1.0 >3.0	>28 <34	>8<10			
Program Description								
EPD type Cradle to gate + options as defined by EN 15804								
System					nergy system input			
boundary	processing	plus manufa	acture and transpo	ort to factory gate p	olus waste arising.			
Service Life	Unspecified	d reference s	service life for this	cradle to gate plus	s options scope			
Comparability	Constructio	n product E	PDs may not be c	omparable if not E	N15804 compliant			
Scope		Compliance demands declaring modules A1–A3, C1–C4 and D. Scenarios for						
Scope	C1–C4 mod	dules declar	e zero results. Jus	tifications for D on	nission are given.			
Stages excluded	A4-5 are ex	cluded.						
Product stages included	Stages denoted by x in Figure 1 are included from A1 raw material acquisition, extraction, refining and processing plus scrap reuse from prior systems; electricity generated from all sources with extraction, refining & transport plus secondary fuel energy and recovery processes. Also, A2 transport internal and to the factory gate as well as A3 manufacture of product packaging, inputs and flows leaving at end-of-waste boundary allocated as coproducts.							
Omission of Modules C1–C4	outlast the C2 transpo processing	All C1–C4 end of life results are zero because all insulation is assumed to outlast the fitout and build life. So, there is no processing to C1 deconstruct, C2 transport discards for processing to recyclers or landfills etc; C3 waste processing of scrap to reuse, recycle and recover energy. C4 waste disposal including pre-treatment and disposal site management.						
Omission of	Unreliable I	background	data excluded all	conservative calcu	llation of:			
Module D potential load or	• results	or summing	B1-B5, C1-C4 sec	ondary flows leav	ing the system,			

or	 result 	ts or summ	ing B1-B5	, C1-C4 s	econdary f	lows leavir	ng the system,	

- benefit beyond design to reuse, recycle and recover avoiding subsequent system loads,
 - benefits from exported energy ex C4 substituted another in next systems.
 - secondary flow results from substituting primary flows in next systems •

No specification of end-of-life scenarios to forecast or link to any current scenarios for practice is reasonable because the background data was too unreliable.

Information Modules System Scope and Boundaries

Figure 1 shows an x marking EPD LCA inventory and impact results to be declared as summed for modules A1-3. All modules B1 to C4 are declared as zero. Modules A4-5 and D1-3 that are marked not declared MND does not indicate zero inventory or impact. Figure 2 shows included processes in a cradle to grave system boundary and excluded scenarios in dashed lines to end of life fate to recycling or to landfill grave.

the system

boundary

End-of-life

² Main fibre % Mass share of post-consumer recycled Polyester (rPET)

³ Bonding fibre of low melt primary Polyethylene terephthalate glycol (PETG)

Acoustics[™] Wallcovering

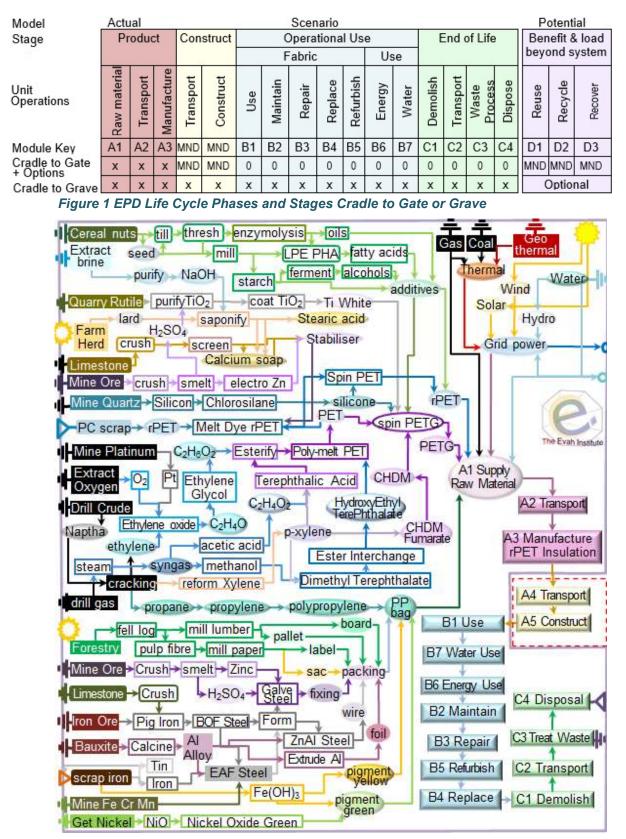
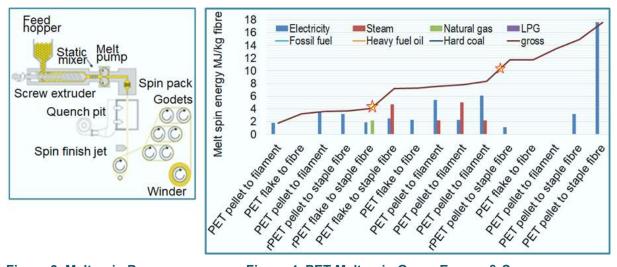


Figure 2 Product Process Flow Chart


Acoustics[™] Wallcovering

Background Data Quality Parameters and Sensitivity

PET fibre LCA results were most sensitive to energy use in the melt-spin process. Figure 3 depicts fibre melt-spun into filament a function of polymer extrusion energy not fibre diameter. It is then cut into staple fibers (often 38 mm) or then drawn and textured to make spun yarn.

As Figure 4 depicts surveys of industry and EcoInvent V2 to 3.4 LCI by Sandin, Roos & Johansson (2019) and van der Velden et al (2014) reported PET fibre melt-spin energy from lowest 1.8MJ/kg to highest 17.64MJ/kg [7, 8]. The mean of 8.3MJ/kg had a standard deviation of 8.

Figure 3. Melt-spin Process

Figure 4. PET Melt-spin Gross Energy & Sources

They found gross melt-spin energy ranged from 3.2 to 11.7MJ/kg PET staple fibre and 1.1 to 13.6MJ/kg partially drawn untextured filament. Table 2 lists survey data selected on quality and age.

Process	gross	Electric	Heavy fuel oil	Natura gas	LPG	Steam	Hard coal	Fossil fuel
rPET pellet to staple fibre	3.684	3.204	0.48					
rPET flake to staple fibre	4.10	1.872		2.21	0.02			
PET flake to staple fibre	7.234	2.484				4.75		
PET pellet to filament	7.600	5.400				2.20		
PET pellet to filament	7.784	2.304	0.48			5.0		
PET pellet to filament	8.320	6.120				2.20		
rPET pellet to staple fibre	11.69	1.116					10.57	
PET pellet to staple fibre	14.90	3.2						11.7

As surveys reported such a wide hot melt-spin energy range and standard deviation that LCA results were most sensitive to, this EPD declares both lower and upper melt-spin energy. The lower melt-spin energy modelled 4.102MJ/kg staple fibre used 1.87MJ electricity, 2.21MJ natural gas and 0.02MJ propane.

Beyond 4.1MJ/kg, upper melt-spin energy was modelled to reflect a 10.4MJ/kg median using electricity only along with that using 8.1MJ Electricity, 2.21MJ Natural gas and 0.02MJ propane. Results of these 3 modelled value sets are discussed in the interpretation section. For clarity this EPD declares results of one lower and one upper melt-spin value only.

Acoustics[™] Wallcovering

Environmental Impact Methods and Terminology

This section outlines environmental impact methods used. The following glossary of terms lists units used and references to the impact calculation methods.

Glossary of Terms	Indicator Potential Methods	Units
Climate Change total	Global Warming Potential (GWP) total [9]	kg CO _{2eq} .
Climate Change fossil	GWP fossil fuels (GWP fossil) [9]	kg CO _{2eq} .
Climate Change biogenic	GWP biogenic (GWP biogenic) [9]	kg CO _{2eq} .
Climate Change land use	GWP land use & change (GWP luluc) [9]	kg CO _{2eq} .
Stratospheric Ozone Depletion	Stratospheric Ozone Depletion (ODP) [10]	kg CFC _{11eq}
Photochemical Ozone Creation	Photochemical Ozone Creation (POCP) [11]	kg NMOC
Photochemical Ozone Formation	Photochemical Ozone Formation (POCF) [11]	kg C ₂ H _{4eq}
Acidification	Acidification air land and water (AP) [12]	kg SO4 ⁺ eq
Acidification	Acidity Accumulated Exceedance (AP) [12]	mol H⁺ _{eq}
Eutrophication	Eutrophication of waters (EP) [13]	kg PO _{4 eq}
Eutrophication Freshwater	EP nutrients freshwater (EP freshwater) [13]	kg P _{eq}
Eutrophication Marine	Eutrophication marine nutrients (EP marine) [13]	kg N _{eq}
Eutrophication Terrestrial	Terrestrial Accumulated Exceedance (EP terra) [13]	mol N _{eq}
Mineral & Metal Depletion	Abiotic Depletion (ADP minerals & metals) [14]	kg Sb _{eq}
Fossil Fuel Depletion	Abiotic Depletion fossil fuel (ADP fossil) [15]	MJ _{ncv} ⁴
Water Depletion	Water Deprivation-weighted (WDP) [16]	m^3 WDP eq

Different methods are reported to comply with the EN15804+A2 2019 standard versus those required for the Green Building Council of Australia (GBCA) credit assessment. Methods used for the lower 4.1MJ/kg melt-spin energy meet needs of the Green Building Council of Australia (GBCA) credit assessment. Methods used for upper electric 10.4MJ/kg melt-spin results/kg declared unit meet needs of both the EN15804+A2 2019 standard and GBCA credit assessments.

The following table describes environmental impacts contributing to risks of ecological issues and collapse lists each indicator with *common names* and remedies.

EPD15804AutexAcousticsWallcovering@EvahNZ25Jan2022.docx

⁴ Ncv stands for net calorific value

Acoustics[™] Wallcovering

Global warming potential (GWP)	Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening " <i>climate emergency</i> ".
Ozone depletion potential (ODP)	Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons (HCFC), chlorobromomethane, hydrobromofluorocarbons, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the "ozone hole" reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.
Acidification potential (AP)	Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of " <i>acid rain</i> " are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning fossil fuels polluting rain and snow precipitation world-wide.
Eutrophication potential (EP)	Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial life across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH ₄) and phosphorus (P, PO ₄ ³⁻) in rain run-off across over-fertilised land catchments.
Photochemical ozone creation potential (POCP)	Tropospheric photochemical ozone, called " <i>smog</i> " near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.
Abiotic depletion potential elemental (ADPE)	Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement " <i>extinction rebellion</i> " calls on adults to secure climate, reserves and biodiversity for current and future generations.
Abiotic depletion potential fossil fuel (ADPF)	Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching " <i>peak oil</i> " acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.

Acoustics[™] Wallcovering

Aditional Information on Carbon Offsets for these Products

Autex has purchased carbon certificates to offset all these products greenhouse emission global warming potential (GWP). These were audited and 3rd party certified to comply for this EPD.

Table 2a shows Total Greenhouse Gas with GWP Offset/kg declared unit modelled on lower 4.102MJ/kg melt-spin energy.

In each lower energy case, all product emissions have been offset far more than they generate which is shown as a negative emission to signify Carbon has been drawn down.

Then it shows Total Greenhouse Gas with GWP Offset/kg declared unit modelled on upper 10.4MJ/kg electric melt-spin.

In each upper energy case, all product emissions have been offset to cancel what their manufacture generated which is shown as a zero emission to signify no residual generation of Carbon dioxide equivalent emissions.

Table 2a Total Greenhouse Gas with GWP Offset A1-A3 kg CO_{2e}/kg declared products

Product manufacture modelled on	Symphony	Composition	Vertiface
lower 4.102MJ/kg melt-spin energy	-1.54	-1.12	-0.99
upper 10.4MJ/kg electric melt-spin energy	0.0E+00	0.0E+00	0.0E+00

These GWP offset amounts are the true 3rd party certified valid GWP estimates to be assigned these products not calculated results shown in the following section for which the offsets were purchased,

Assessment Results Cradle to Gate

Table 2b shows LCIA results/kg declared unit calculated on lower 4.102MJ/kg melt-spin energy without any offsets.

Table 2b System LCI and LCIA Results A1-A3/kg

Impact potential categories	Units	Symphony	Composition	Vertiface
Greenhouse Gas Biogenic Sources	kg CO _{2e}	-0.19	-0.15	-0.14
Greenhouse Gas Land Use Change LULUC	kg CO _{2e}	8.4E-10	7.3E-10	6.9E-10
Greenhouse Gas Fossil Sources	kg CO _{2e}	3.14	2.30	2.03
Total Greenhouse Gas without offsets	kg CO _{2e}	2.95	2.14	1.89

Table 2c shows LCI and LCIA results/kg declared unit calculated on upper 10.4MJ/kg electric meltspin without any offsets.

Table 2c System LCI and LCIA Results A1-A3/kg

Impact potential categories	Units	Symphony	Composition	Vertiface
Greenhouse Gas Biogenic Sources	kg CO _{2e}	-0.24	-0.20	-0.18
Greenhouse Gas Land Use Change LULUC	kg CO _{2e}	8.4E-10	7.3E-10	6.9E-10
Greenhouse Gas Fossil Sources	kg CO _{2e}	7.64	6.60	6.27
Total Greenhouse Gas without GWP offsets	kg CO _{2e}	7.41	6.41	6.09

Acoustics[™] Wallcovering

Results for Inventory and Potential Impact

Results for the lower melt-spin energy meet needs of the Green Building Council of Australia (GBCA) credit assessment.

Cradle to Gate Inventory and Potential Impact Results

Table 3a shows the Acoustics[™] Wallcoverings LCI and LCIA results/kg declared unit modelled on lower 4.102MJ/kg melt-spin energy. The lower melt spin energy results reflect the competing products data sources position taken.

Table of Oystelli Eor and EorA Results AT-Ao	Ng			
Impact potential categories	Units	Symphony	Composition	Vertiface
Stratospheric Ozone Depletion	kg CFC11 _e	1.4E-09	1.2E-09	1.0E-09
Photochemical Ozone Creation	kg C ₂ H _{4e}	1.3E-02	1.2E-02	1.2E-02
Acidification	kg SO _{2e}	8.7E-03	6.0E-03	5.1E-03
Eutrophication of Water	kg PO _{4e} 3	2.0E-03	1.5E-03	1.3E-03
Abiotic Depletion Fossil Fuel	MJ ncv	3.1	2.3	2.0
Abiotic Depletion Mineral (Elemental)	kg Sb _{eq}	3.6E-03	3.1E-03	2.8E-03
Water Deprivation Weighted Scarcity	world m ³ eq	5.16E-02	0.11	0.16
Input flows				
Net fresh water	m ³	0.31	0.28	0.24
Secondary material	kg	0.79	0.69	0.99
Secondary renewable fuel	MJ _{ncv}	0.49	0.36	0.70
Secondary non-renewable fuel	MJ _{ncv}	0.33	0.27	0.22
Primary renewable energy not feedstock	MJ _{ncv}	2.78	3.56	3.75
Primary energy renewable feedstock matter	MJ _{ncv}	0.91	0.77	1.49
Total primary renewable energy resources	MJ _{ncv}	3.69	4.33	5.25
Primary energy not renewable or feedstock	MJ _{ncv}	40.40	30.47	26.95
Primary non-renewable feedstock energy	MJ _{ncv}	13.56	10.29	7.18
Total primary non-renewable energy use	MJ _{ncv}	53.97	40.76	34.13
Output flows				
Hazardous waste disposed	kg	4.9E-03	4.5E-03	4.3E-03
Non-hazardous waste disposed	kg	0.56	0.51	0.37
Radioactive waste disposed	kg	1.3E-09	1.1E-09	9.7E-10
Components for reuse	kg	0.11	0.07	0.00
Material for recycling	kg	0.09	0.10	0.16
Material for energy recovery	kg	2.5E-04	2.1E-04	2.0E-04
Electrical energy exported	MJ _{ncv}	0.E+00	0.E+00	0.E+00
Thermal energy exported	MJ ncv	0.E+00	0.E+00	0.E+00

Table 3a System LCI and LCIA Results A1-A3/kg

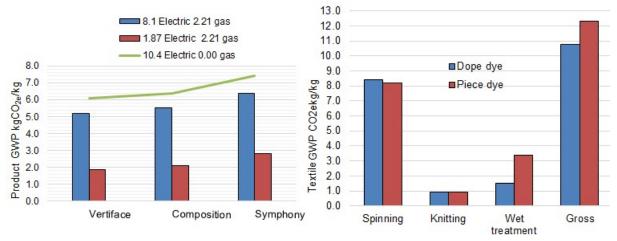
Table 3b shows LCI and LCIA results/kg declared unit modelled on upper 10.4MJ/kg electric melt-spin energy. Results for upper melt-spin-energy results/kg declared unit meet needs of both the EN15804+A2 2019 standard and GBCA credit assessments.

Acoustics[™] Wallcovering

Table 3b System LCI and LCIA Results A1-A3/I Impact potential categories	vg Units	Symphony	Composition	Vortiface
Stratospheric Ozone Depletion	kg CFC11 _e	5.2E-09	4.7E-09	4.5E-09
Photochemical Ozone Formation	kg C ₂ H _{4e}	1.9E-02	1.8E-02	1.8E-02
Photochemical Ozone Creation	kg NMVOC _{eq}	2.1E-02	2.1E-02	2.1E-02
Acidification Potential	kg SO _{2e}	2.5E-02	2.3E-02	2.3E-02
Acidity Accumulated Exceedance	Mole H⁺	2.2E-02	1.8E-02	1.7E-02
Eutrophication Potential	kg PO _{4eq} ³	6.7E-03	6.0E-03	6.1E-03
Eutrophication Potential Freshwater	kg P _{eq}	1.4E-06	1.0E-06	8.3E-07
Eutrophication Potential Terrestrial	Mole N eq	1.4E-02	9.5E-03	9.6E-03
Eutrophication Potential Marine	kg N _{eq}	5.9E-03	4.9E-03	4.7E-03
Abiotic Depletion Fossil Fuel	MJ _{ncv}	6.7	5.7	5.3
Abiotic Depletion Mineral (Elemental)	kg Sb _{eq}	6.6E-03	5.8E-03	5.5E-03
Water Deprivation Weighted Scarcity	world m ³ eq	0.23	0.21	0.21
Input flows				
Net fresh water	m ³	1.2	1.1	1.1
Secondary material	kg	0.79	0.69	0.99
Secondary renewable fuel	MJ _{ncv}	1.41	1.16	1.49
Secondary non-renewable fuel	MJ _{ncv}	0.34	0.28	0.23
Primary renewable energy not feedstock	MJ _{ncv}	5.8	6.4	6.5
Primary energy renewable feedstock matter	MJ _{ncv}	0.84	0.71	1.44
Total primary renewable energy resources	MJ _{ncv}	6.7	7.1	8.0
Primary energy not renewable or feedstock	MJ _{ncv}	102	103	85
Primary non-renewable feedstock energy	MJ ncv	17	13	10
Total primary non-renewable energy use	MJ _{ncv}	119	103	95
Output flows				
Hazardous waste disposed	kg	6.0E-03	4.9E-03	5.0E-03
Non-hazardous waste disposed	kg	1.8	1.7	1.5
Radioactive waste disposed	kg	5.4E-09	4.8E-09	4.6E-09
Components for reuse	kg	0.32	0.18	0.00
Material for recycling	kg	0.13	0.15	0.20
Material for energy recovery	kg	5.2E-04	4.6E-04	4.4E-04
Electrical energy exported	MJ ncv	0.E+00	0.E+00	0.E+00
Thermal energy exported	MJ ncv	0.E+00	0.E+00	0.E+00

Module C and D Inventory and Potential Impact Results

All results were zero for B1 Building Use, B3 Repair and B5 to B7 Refurbishment, Operating Energy and Operating Water. All results were zero for D1 Demolition, D3 Waste Processing and D4 Disposal.


Acoustics[™] Wallcovering

Autex Acoustics

Interpretation

This interpretation section discusses results from two upper 10.40MJ and one lower 4.102MJ value. To compare such influences, Figure 5 depicts Global Warming Potential (GWP) results from the three models. Compared to the lower energy model, the upper electric GWP was 2.7 to 3.3 times higher and upper gas and electric GWP was 2.3 to 2.8 times higher.

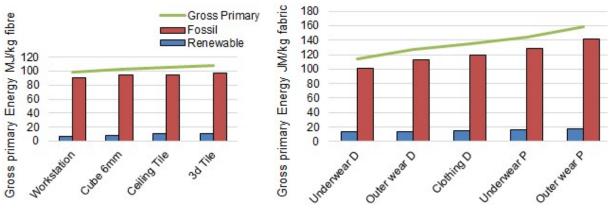

In 2017-18 a 3rd party reviewed EPD of 6 polyester fabrics by Roos also used upper melt-spin energy data [15]. Figure 6 depicts that LCA's GWP of dope dyed polyester filament fibre extrusion spinning charted versus wet treatment and knitting fabric. That small scale fibre production high GWP should be less with larger-scale efficiency.

Figure 5. PET Fibre GWP kg CO_{2e}/kg

Figure 6. PET Fabric GWP kg CO_{2e}/kg

Nevertheless, this LCA using Ecolnvent V3.4 LCI based on first-hand industry PET fibre spinning data shows GWP comparable to upper 10.4 MJ electric melt-spin declared results as Figure 7 depicts. Sandin, Roos & Johansson (2019) also reported gross production energy use between 96 and 125 MJ/kg PET fibre as declared herein [7]. Their results were comparable to that calculated GWP from 1.7 to 4.5kg CO₂ eg/ kg PET fibre as Figure 8 depicts.

Figure7. PET Fibre MJ/kg

Figure 8. PET Fabric MJ/kg

Such variation in energy use and GWP result suggests that more accurate melt-spin energy definition is vital for true polyester LCA modelling to have confidence in affected EPDs. Unless based on recent post 2019 rPET staple fibre spinning-industry datasets, LCA results based on one melt-spin energy background data value are probably too uncertain to be declared representative of PET fibre.

Global GreenTag^{Cert™} EPD Program

EN 15804+A2, ISO 14025, ISO 21930 Environmental Product Declaration

Autex Acoustics[®]

Acoustics[™] Wallcovering

References for this EPD

[1] EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

[2] ISO 14025:2010 Environmental labels and declarations – Type III – environmental declarations - Principles and procedures.

[3] GreenTag[™] 2021 EPD Program, Product Category Rules https://www.globalgreentag.com/epd-program.html.

[4] ISO 15686-2:2012 Buildings and constructed assets - Service life planning - Part 2: Service life prediction procedures.

[5] ISO 15686-8:2008 Buildings and constructed assets - Service-life planning - Part 8: Reference service life and service-life estimation.

[6] ISO14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines.

[7] Environmental impact of textile fibres –what we know and what we don't know, Sandin, G., Roos, S., & Johansson, M., ISBN:978-91-88695-91-8, Mistra Future Fashion report number: 2019:03 part 2.

[8] LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Natascha M. van der Velden & Martin K. Patel & Joost G. Vogtländer. Int J Life Cycle Assess (2014) 19:331–356, DOI 10.1007/s11367-013-0626-9

[9] IPCC 2013, Global Warming Potential 100-year, IPCC Fifth Assessment Report Climate Change.[8] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone

Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014.

[9] Van Zelm et al. 2008 as applied in ReCiPe LOTOS-EUROS.

[10] Seppälä et al.,2006 and Posch et al., 2008, Accumulated Exceedance.

[11] Struijs et al., 2009b, EUTREND model, as implemented in ReCiPe.

[12] CML–IA V4.1 LCA methodology, 2002, October 2012, CML University of Leiden, Netherlands.[13] Guinée et al., 2002, and van Oers et al., 2002 CML LCA methodology 2002a, Institute of

Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands.

[14] Boulay et al., 2016, Available WAter REmaining (AWARE).

[15] PET Fabric https://portal.environdec.com/api/api/v1/EPDLibrary/Files/123f5ad6-8cb9-4a8a-afad-751c6a9d6647/Data.

Bibliography

Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative

EN ISO 14024:2000, Environmental labels and declarations - Type I environmental labelling - Principles and procedures (ISO 14024:1999).

EN ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006).

EN 15643-1:2010, Sustainability of construction works - Sustainability assessment of buildings - Part 1: General framework.

EN 15643-2, Sustainability of construction works - Assessment of buildings - Part 2: Framework for the assessment of environmental performance.

International Energy Agency, Energy Statistics 2020 http://www.iea.org

ISO 14015:2001 EMS: Environmental assessment of sites & organizations (EASO)

ISO 14040:2006 EM: Life cycle assessment (LCA): Principles & framework, London, BSI, 2006.

ISO 15392:2008 Sustainability in building construction General principles

ISO 15686-1:2011 Buildings & constructed assets - Service life planning - Part 1: General principles and framework

ISO 21931-1:2010, Sustainability in building construction - Framework for methods of assessment of the environmental performance of construction works - Part 1: Buildings.